AYEHEARAZFERAIRZER

7B X

LA B B R #U8 BL
WIgEeE G Tl B[R EBBIAR
Improved VoIP Security with
Real-time Speech Hiding in G.711

WX A
DLBP BF B IS R AR AT P i 49853835 G, T1] a2 2k S A5

IR B L @ BSR4 E R A2 AT A# 54
XM 9T F2 A FALR] AL
A T E4ER HEHR D AW EHEL

T X &

AR R AR A S P 0 B BF B RIS A 69 R AL E F A e
B2 F AN E TP RAVT TR —ERARRF TR A ReHEF AR
BIEE &3 - Bt > B B4 A IR s E R B S & i A RIRRR
BNECARBE TN RBWIRE T — B er-53RE 8 7% » &R £ Voice
over Internet Protocol (VoIP)&yBpefi@zn %4t o

G.T11 &4 VolP £ B ¥ &A% E A X E%BIHT RMSH G TIL R#E T —
& 7 o Bp B IS B2kt o 7 Scheme 1 K Ba 887 sbiE B 04 $UTEF R A 0. 257
R BB R BRI LR VolP BAELZ@AY - KE—F FA
Advanced Encryption Standard (AES) B EFE XUR S 240 2MH &
Scheme 2 &9 5+ £ % 0.28 A MATE R > LR BT b Jy 7K 38 A 7 Bp B
VolP JE A -

MsEFE - TMER, BPeFE, AES, G.711, Linphone, Speex, VolP

Title of Thesis :
Improved VoIP Security with Real-time Speech Hiding in G.711

Name of Institute : Department of Computer Science and Information Engineering,

National Chi Nan University Pages : 54
Graduation Time - 2/2007 Degree Conferred : Master
Student Name : Chungyi Wang Advisor Name : Quincy Wu
Abstract

Speech hiding is a powerful information protection mechanism in real-time
communication systems. By hiding one secret speech into the cover speech, we can
get a stego speech, which sounds meaningful and indistinguishable from the original
cover speech. Therefore, even if attackers intercept the audio packets on Internet,
they would not notice that there is another speech hidden inside those packets. In this
thesis, we propose a scheme for speech hiding in a real-time communication system
such as voice over Internet Protocol (VoIP).

We propose a novel design of real-time speech hiding for G711 codec, which is
widely supported by almost every VoIP device. Two schemes were proposed in this
thesis. Experimental results in Scheme 1 show that the running time for the proposed
algorithm takes only 0.257ms, which is suitable for real-time VoIP applications. By
adding AES encryption to enhance the security, we obtain Scheme 2 whose running
time is 0.28ms, which also shows that this scheme is suitable for real-time

applications.

Keyword : AES, G.711, information hiding, Linphone, real-time speech,
Speex, steganography, VolP

Table of Contents

B A B oottt ettt ettt et 2
ADSELACT. ...ttt 3
Table Of COMTEITS.cviiiiiiiiiii et 4
FIgUre INAeXoooiiiiiiiee e 6
TADIE TNAOX ..ttt 7
B BT 000 R e 1 o) o B PP P PR PPRPPR 8
1.1 MOTIVATION ..ottt ettt e et e et e e et e e enaee e 8

1.2 Related WOTKcooiiiiiicee e 9

1.3 SOIUTION. ...t 10

2. SCREINE T .iiiiiiiiiiii i 11
2.1 Speech Hiding SPaceooovviiiiiiiiiie e 12

2.2 Compressing Secret SPEeCh ..o 13

2.3 Hiding Secret Speech into Cover Speechccc.ccoovviiiiiiiiii 15

2.4 Extracting Secret Speech from Stego Speech...........ccccccooovviiiiiiiiii 15

2.5 Linphone implementation.............oooooiiiiiiiiiii 16
2.5.1 Call Setup In Mmediastreamer2...........oovoueiiiiieee e 17

2.5.2 MOdIfYINgG COAOSooovviiiiiiiiie e 19

2.6. G711 prlaw and A 1aw ..o 20

3. Quality Analysis of Scheme L...........ccoooiiiiii e 21
3.1 Scheme 1 (r=3) and Scheme 1 (r=1)............c.cccovviiiiiiiiiiieieeeeee 21

3.2 S1gnal/NOISE RATIOoooiiiiiiiiiii e 21

3.3 Processing TiIMeooooiiiiiiiiii e 23

B4 SUIIATY ..o ettt aae e 24

A SCREINE 2...iiiiiiiii i 25
4.1 AES Encryption/DecrypUtioncoooiviiiiiiiiiiiiiiiiie e 26

4.2 Speech Hiding SPaceoooovviiiiiiiiiie e 27

4.3 Compressing Secret SPEECh ..o 29

4.4 Encrypting the Compressed Secret Speechooooviviviiiiiiiiiii 29

4.5 Decrypting the Encrypted Secret Speech..........ccc.ccooviiiiiiiiiiiii 29

4.6 Linphone implementation.............oooooiiiiiiiiii 30

4.7 G711 prlaw and A-Law ..o 31

5. Quality Analysis of Scheme 2...........ccoccooiii 32
5.1 Signal/NOISE RAIOooiiiiiiiiiiiiic e 32

5.2 Processing TIIMEcoooiiiiiiiiiiie e 32

B3 SUIMIMATY ..ottt et et 34

6. Conclusion and Future WOorkocoiiiiiiiiiii e 35
RETEIOIICE. ... 36
APDCIIALX ..o 37
Appendix 1. Codes of Scheme 1cccccoiiiiiiiiiii e, 37
Appendix 2. Codes of Scheme 2 ..., 44

Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 3.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.

Figure 5.

Figure Index

1 G711 NCOAINE.....oviiiiiiiiiiceie e 11
2 Flow chart of the sendercccoooviviiiiiiiiii e, 12
3 Flow chart of the receiver..............cccccooiviiiiiiiii 12
4 Allocating hiding Spaceoooviiviiiiiiiiii e, 13
5 Speex COMPIESSINGccovviiiiiiiiiiiiieie et 14
6 Embedding Secret Speech into Cover Speechcoovee, 15
7 System Components of Linphone.................ccococcooviiiii 16
8 Call setup process of mediastreamer2..................cceevvvvvviinneeeennn, 17
9 Calling sequence of audio_stream_start_full(...)......................... 18
10 Data flow of mediastreamer2...............ccccoovieiiiiiiiiiiiniceneen 18
11 Data flow of ulaw.cccooviiiiiiiiie e 19
12 Modifying the data flow in ulaw.c............ccoocoooviiiiiiiii 19
1 Runtime of Scheme 1 which (r=3) and (¢=1)c..ccoooeeiennnnn, 24
1 Flow chart of sender in Scheme 2.................ccccooeiiiiiiiii 26
2 Flow chart of receiver in Scheme 2.................ccocoviiiiiiiiiinninn, 26
3 Allocation of Hiding Space............cooovviiiviiiiiiiiiiiiii e 28
4 Allocating Of #0oooiiiiiii e, 28
BAIocating of #1ooooviiiiiiiiiii e 29
6 Relation of S, S” and HS ..oooooriee 29
7 Flow chart of decryptingcccccoovvviiiiiiiiiiiiiieeeeeee 30
8 Modifying the data flow in ulaw.c...........cccccoovviiiiiiiiii, 31
1 Runtime of Scheme 1 which (r=1) and Scheme 2....................... 33

Table Index

Table 2. 1 Speex compression quality and the output frame size.................. 14
Table 3. 1 Compression ratio and SNR of different encoding methods......... 22
Table 3. 2 Running time of Scheme 1 which (r=3) and (¢=1).............c.cooon. 23
Table 5. 1 Compression ratio and SNR of different encoding methods......... 32
Table 5. 2 Running time of Scheme 1 (r=1) and Scheme 2............................. 33

1. Introduction

1.1 Motivation

In voice over Internet Protocol (VoIP) systems, human voice needs to be encoded
as digital packets, and transmitted over Internet. Since Internet is an open
environment where packets may be eavesdropped by malicious attackers, it is a
common approach to protect the audio contents by an encryption algorithm, such as
the Data Encryption Standard (DES) or the Advanced Encryption Standard (AES) [1].
However, there may be some potential problems for these approaches.

Although encryption can protect the contents of the message, the speech packets
will sound meaningless and chaotic after they are encrypted. The attackers could thus
easily notice the speech is protected by encryption. This encourages the attackers to
invest more resource to decipher the messages, because encrypted messages usually
contain valuable secret inside it. Therefore, compared with cryptographic techniques
that only conceal the contents of information, the approach of information hiding
(steganography) tries to hide not only the contents but also their own existence [2].
This technique generally choose some cover messages which contains no sensitive
information, and embeds the secret information into the cover messages. Information
hiding has been widely adopted in protecting messages in plaintext [3], audio files in
WAV or MP3 formats [4], and image files with BMP (bitmap) [5] or compressed
JPEG format [6] .

In this thesis, we propose a scheme for information hiding in real-time VoIP
systems. We hide the secret speech into one meaningful cover speech, and obtain a
stego speech which can be transported over public Internet. Ideally, a good hiding
algorithm will produce a stego speech which sounds almost the same as the original
cover speech. As the difference is indiscernible to the observers, it would be
difficult for attackers to notice it.

For human auditory system (HAS), generally little distortions of the voice data
will not be noticed, and the speech can still be understood easily. We define the
speech hiding space as the range in which a voice packet is allowed to be distorted
while keeping indistinguishable to human ears. Generally, in a sampled voice data,
modifying the Least Significant Bits (LSBs) will cause the minimum distortion, so the
hiding space is usually chosen in LSBs.

There is another problem: attackers could possibly decipher secret speeches

successfully after analyzing large amounts of audio packets. Therefore, adaptive

solutions have to be proposed to further protect the VoIP conversation.

1.2 Related work

In [3], the possibility is investigated to hide information steganographically in
the “noise” created by automatic translation of natural language documents. It uses
the phenomenon of errors created by automatic translation to embed secret messages.
Here is the basic idea: the sender and the receiver jointly select one public text, and
translate it to get cover message. Then, the sender encodes secret with cover message
to obtain stego message. The receiver will compare the cover message and the stego
message, and then obtaining the hidden data from the differences. However, for an
attacker, the differences in stego messages just seem plausible. Because different
translation packages may generate minor errors in the translated sentences, it should
be difficult for an adversary to determine if these errors come from the steganography
or inaccuracy of different translation packages.

Information hiding in image applications also attracted many studies. The JPEG
format image could also support steganography. In [6] it proposed a method to hide
secret messages by modifying comment marker, which is a basic component in the
JPEG file structure. There were two methods proposed in [6]. The first method is
called replacement methodology, which loads comment marker and modifies the
contents. It maintains the original size of the cover image. In the second method,
insertion methodology hides secret messages into the cover image which had no
comment marker. These two methods could embed information into a cover image
and generate a stego image which is discernible from the original image.

In [4], it mentions that most audio information hiding schemes are not
music-based. The dynamic ranges of HAS are much higher than human visual system
(HVS). Therefore, the size of hiding data in audio information hiding would be
much less than image format. In [4] it proposed a method to solve this problem by
utilizing the dynamic range filter in MP3-format. Because filtered signals are mostly
outside the HAS dynamic ranges, it will be difficult for human to notice that this
approach is being applied..

In [7] it proposed a scheme in information hiding based upon sub-band. By
observing that the little distortions in high frequency band would not be noticed in
HAS, it splits cover speech into two frequency bands (called low and high). After
embedding compressed secret speech into the high frequency band, combining these

two bands together and sending it to the receiver. It also applies encryption algorithms

on compressed secret speech. In other words, even if the adversary intercepted the

message, they could not decipher the secret speech without correct keys.

1.3 Solution

This thesis proposes two different schemes. In Chapter 2, we propose Scheme 1
which selects hiding samples from the cover speech with interval 1 and modifying the
least significant r bits. Modifying parameter r will create different size of hiding space,
i.e., the number of bits that will be chosen in LSBs to store the hidden information.
However, care must be taken in determining the size of the hiding space. If too
many bits are chosen, the modified speech sample will have lots of noises, and thus
will become easy to be noticed that information hiding approaches are applied.

Unfortunately, if attackers understand the algorithm of Scheme 1, they could
reconstruct the secret speech. For this reason, we propose Scheme 2 in Chapter 4 to
solve this potential problem. This new scheme adopts encryption algorithms to
prevent attackers from getting the contents of the secret speech.

We will describe the detailed procedures in the following chapters. Chapter 2
will introduce the flow chart of Scheme 1, then analye the speech quality and
processing time in different value of r in Chapter 3. The flow chart of Scheme 2 will
be described in Chapter 4, and the speech quality and processing time of this scheme
will be analyzed in Chapter 5. The last chapter will mention conclusion and the future

work.

10

2. Scheme 1

In this thesis, we study the information hiding scheme with G.711 [8] as the
codec of the cover speech. G711 is the most popular codec which is supported in
every VoIP and circuit-switching system [9]. Its sample rate is 8000Hz, where every
sample is encoded to 8 bits. It will output one 64kbps audio stream. There are two
versions of G.711: the A-law and the p-law. The p-law is used in North America and
Japan, and A-law is used in Europe and the rest of the world. They both support good
quality with Mean Opinion Score (MOS) value 4.3, which is much higher than other
audio codecs such as G.723, G726, and G.729.

G.711 algorithm takes a 16-bit linear audio sample as input and converts them
into 8 bits. As shown in Figure 2.1, for every 160 samples with each sample

consisting of 16 bits will be encoded into 160 samples with 8 bits.

One audio sample
(16 bits)

. Linear audio samples
0| 1 2 158 (159 (320 bytes)

G.711 encoding

|

G.711 audio samples
(160 bytes)

One G.711 sample
(8 bits)

Figure 2. 1 G711 encoding

Next, as shown in Figure 2.2, for a sender to apply the information hiding
technique to protect the voice stream, a speech hiding space is allocated from a speech
packet. The speech packet is generally called cover speech and denoted by C. The
speech hiding space is denoted as HS and will be used to store the secret speech. Let
us denote the secret speech as S. Suppose we obtain speech S’ by compressing S, and
hide them into HS. The new speech packet (which contains S’) is called the stego
speech, which is denoted by G. Now the stego speech G can be sent to the receiver via
public Internet.

11

Secret Speech S

Compression
P,
Hiding Secret
Speech into
Cover Speech C Cover Speech
G
Allocating HS

Hiding Space
Figure 2. 2 Flow chart of the sender
Figure 2.3 shows the flow chart of the receiver. After the receiver receives the
stego speech G, he/she can extract S” from HS, and decompress S’ to get the secret
speech D. (Please note that we choose a different notation because D may differ
from the original secret speech S, because of the lossy nature of the compression
algorithm.)

Stego Speech G HS

Allocating

Reconstructing
G
Hiding Space

S* from HS

s — D
Decompressmn

Figure 2. 3 Flow chart of the receiver

2.1 Speech Hiding Space

Determining the size of speech hiding space is very important. The space is used
for hiding secret speech so that attackers could not easily notice that there is one
secret speech hiding in stego speech. To achieve this goal, the space should cause only
slight distortions and the noises should be evenly distributed into all speech packets.
Moreover, to prevent the cover speech from being modified dramatically during the
information hiding process, we choose only half of cover speech samples to hide
secret data. Suppose there are N samples in one speech packet, and denote the number
of every sample by 0,1,2...(N-1), where N is an even integer. Among them, the
hiding samples are those numbered by 1,3,5,7...(N-3),(N-1), as shown in Figure 2.4.

For every hiding sample, we choose the least significant r bits to store the secret
speech. By doing so, we can keep the distortion to the cover speech as low as possible,
and thus the noises caused by the slight distortion would not be perceived by human

ears. These r bits in the hiding samples will collectively be used to store the secret

12

speech, as shown in Figure 2.4.

0
1 (716|514 3]21H08) if r=3
2
3
4

157

158

159

G.711 packet
Figure 2.4 Allocating hiding space

2.2 Compressing Secret Speech

To reduce the noises caused by the steganographic approach, the size of hiding
space must be much smaller than the cover speech. Therefore, the secret speech
must be compressed before it is inserted into the cover speech. Furthermore, to
achieve the requirement of real-time playing, the compression algorithm must match
the limitation of short running time. Here we choose the speech compression tool
Speex [10] to compress the voice data.

Speex is an open source compression software. It is based on Code Excited
Linear Prediction (CELP) [11] and is designed to compress voice at bit-rates ranging
from 2 kbps to 44 kbps. It supports compressing modes like narrowband (8 kHz),
wideband (16 kHz), and ultra-wideband (32 kHz) in the same bit-stream. It also
supports echo cancellation and noise suppression. We assume the default number of
samples is 160 for a G.711 p-law packet. Therefore, we choose the narrowband mode
in Speex, where the input data are exactly 160 samples with each sample consisting of
16 bits.

To utilize Speex API [12], we need to specify the quality of compression. Table
2.1 shows the sizes of the output frame for each required quality (assume the input

data consist of 160 speech samples).

13

Table 2. 1 Speex compression quality and the output frame size

Quality FrameSize
(bytes)
6
10
15
20
20
28
28
38
38
46
62

O |0 | |||k~ WD |—=|O

—_
)

Let Ns denote the size of the compressed secret speech, and Nc denote the
number of samples in the cover speech, then the formula for calculating the size of
hiding space r can be written as:

r=[Ns*8/(Nc/2)] (D)

Ns*8 stands for the total number of bits of S’, and (Nc¢/2) stands for the total
number of hiding samples (Scheme 1 only chooses half of samples in the cover
speech, so Nc/2 = 160/2 = 80).

The value of r should depend on the required quality of the compressed speech.
As shown in Figure 2.5, if the required quality of compression is 6, then according to
Table 2.1, Ns would be 28 bytes. Therefore, r can be calculated by formula (1),

N, *8 [2241
r=|— = =3.
N | |80

c

2
On the other hand, if the required quality is 1, Ns would be 10 bytes, so the value

of r is 1 bit, from a similar calculation.

S 0 1 ... | 158|159
g
Speex encode if Quality =6
g
g 0 1 .. | 26 | 27

Figure 2. 5 Speex Compressing

14

2.3 Hiding Secret Speech into Cover Speech

Figure 2.6 illustrates the process for hiding the secret speech into the cover
speech. The sender compresses the secret speech and embeds it into the cover speech
in the hiding space. Because we select half of samples in a cover speech as the hiding
space, sample #1, #3, #5, ... #159 will be utilized to store the secret. For each one, we
serially pick up r bits from S’, and place them into the LSBs of the corresponding
hiding sample.

—
] t(S)#0
Speech Sample

Secret(S")#1
Speech Sample

Cover(C)#1

Speech Sample

Cover(C)#3
Speech Sample
Cover(C)#5

Speech Sample

fr=3

Figure 2. 6 Embedding Secret Speech into Cover Speech

2.4 Extracting Secret Speech from Stego Speech

With prior knowledge of the value of r, the receiver extracts r bits from the
hiding space (there are 80 such samples in each packet), and concatenates them to
reconstruct S’.

The next step is decompressing S’ to obtain the secret speech D. Because Speex
is a lossy compression algorithm for voice, there may be a little difference between
the secret speech D and the original secret speech S, but the distortion is acceptable

and the difference should be indiscernible by human ears.

15

2.5 Linphone implementation

To verify the performance of this algorithm, we implemented this real-time
speech hiding scheme in Linphone. To verify the empirical performance, our
proposed algorithm is implemented in Linphone [13], which is an open source VoIP
software. It can send/receive audio, video and instant messages. It supports audio
codecs including G711, GSM and iLBC. It also supports video codecs including
H263-1998, MPEG4 and theora. Linphone complies with the Session Initiation
Protocol (SIP) and is able to interoperate with most SIP-compatible phones and SIP

proxy servers.

Linphone Core
| |

| | | | |
eXosip @l oRTP | media- ...etc

streamer2

Operation System

1L
Hardware Resource

Figure 2. 7 System Components of Linphone

Linphone consists of several components as illustrated in Figure 2.7: The oRTP
module will utilize Real-time Transport Protocol (RTP) to prepare the sampled audio
data in RTP packets. The eXosip is a library based on the GNU oSIP protocol stack,
which handles the signaling for call setup and teardown in SIP. The mediastreamer2
is one important part of linphone. It contains several objects to process audio and
video data and outputs them to the oORTP module or a local file. Moreover, it contains
codec objects to compress audio and video.

It is necessary to understand how Linphone handles a VoIP call. As shown in
Figure 2.8, when both parties agree on the choice of audio codec, Linphone will
create corresponding data structures to process the voice coding and decoding. The
structures of codecs are defined in the library of mediastreamer2, which supports a
variety of codecs, including G711, GSM and other optional codecs. The
mediastreamer2 also creates the structures which process the input and output of

audio. For example, the input from a microphone and the output to speaker are

16

handled by the mediastreamer2.

Moreover, mediastreamer2 also handles the task of packing speech data into
Real-time Transport Protocol (RTP) packets. It will create the structures to process
sending and receiving in RTP. In other words, in Linphone software, mediastreamer2

is an important component which handles all tasks about audio speech processing.

Call setup

g

mediastreamer?2

Create Coder structure
to handle encode/decode

g

Create Media structure

to handle readfwrite from media
device

!

Create RTP structure
to handle sendfreceive

Figure 2. 8 Call setup process of mediastreamer?2

2.5.1 Call Setup in mediastreamer2

Suppose we denote the structure of reading audio array as ACs, encoding audio
array as CEs, and sending RTP packet as RSs. When one call is set up, the
mediastreamer2 will use the function audio_stream_start_full(...) in
mediastreamer2/src/audiostream.c to create the six structures mentioned above.
Then we assign ACs to CEs, which will encode the audio array from ACs. Next we
assign CEs to RSs, then RSs will pack the audio array which is encoded by CEs to
send.

Reversely, we denote the structures of writing audio array by MPs, decoding
audio array by CDs and receiving RTP packet by RPs. First we assign MPs to CDs ,
and assign CDs to RRs.

17

— MCs CEs RSs
(Media Capturer) (Encoder) (RTP Sender)

audio_stream_start_full | |

— MPs CDs RRs

(Media Player) (Decoder) (RTP Receiver)
Figure 2. 9 Calling sequence of audio_stream_start_full(...)

By the flow chart of sending speech, MCs reads audio array from the soundcard.
Next CEs reads the audio array from MCs and encodes it, and CEs will write the
audio array which is encoded into the queue of RSs for sending. In the final step RSs
will pack the audio array into a RTP packet and transmit it over Internet. When the
receiver gets the packet, it will store it into RRs. RRs reads the audio array from the
packet, then CDs will read and decode it. Next CDs writes the audio array which is
decoded into MPs for playing. In the final step MPs will write the audio array into the

soundcard to play.

Send Media
Pack & Send

MCS Read Media Array' CES Encode RSS .

Receive Media

Write Media Array Decode Receive & Unpack
CDs—RRs-

MPs -

Figure 2. 10 Data flow of mediastreamer2

Our proposed scheme focused on modifying codecs to support information
hiding, so we only need to modify the functions in Linphone which processes codec.
For codec G711 p-law, mediastreamer2 will create two structures to process p-law
encoding and decoding, respectivelyy, and use the functions in
mediastreamer2/src/ulaw.c to finish the task.

The functions in ulaw.c for encoding and decoding are ulaw_enc_process(...)
and ulaw_dec_process(...), respectively. In ulaw_enc_process(...), the function reads
the audio array from MCs and encodes it, then write it into the queue of RSs for
sending. In ulaw_dec_process(...), the function reads the audio array from RRs and
decodes it, then write it into the queue of MPs for playing.

Let us denote the audio array by A, and the encoded audio array is denoted by A’,

The flow chart of the ulaw.c can be illustrated by Figure 2.11.

18

ulaw_enc_process

ulaw_dec_process

Read Audio Array Read Media Stream
from memory from RTPreceiver
} }
A A

!

| y-law Encode |

!
e
!

}

| p-law Decode |

I
A

|

Figure 2. 11 Data flow of ulaw.c

2.5.2 Modifying Codes

In ulaw_enc_process, the audio array should be processed by the flow chart of
Figure 2.2 before it was written to the RTPsender. By the flow chart of Figure 2.5, 160
samples will be read from the secret speech, and then compressed to obtain S’. Then
picking the hiding speech space HS from the cover speech C. Here we use the
encoded audio array A’ as the cover speech. In the last step, as depicted in Figure 2.6,
S’ is hidden into HS and the stego speech G is obtained.

In ulaw_dec_process(...), the flow chart is in the reverse direction with
ulaw_enc_process(...), so we need to modify the code before decoding. We extract
HS from G before decoding, and reconstruct the secret speech S’, and decompress S’

to obtain D.

ulaw_enc_process’ ulaw_dec_process’

Read Media Stream
from RTPreceiver

Read Audio Array
from memory

I I
A A
| }

| p-law Encode | Get HS from A’

Get S’ from HS

A Get D from S’ D
| !
S * Get ' from S | p-aw Decode |

Get HS from A’)
Hide S’ into HS A
| |

Figure 2. 12 Modifying the data flow in ulaw.c

19

2.6. G.711 p-law and A-law

The coding algorithms of p-law and A-law are very similar, except that A-law
algorithm provides a slightly larger dynamic range than the p-law at the cost of worse
proportional distortion for small signals. This means that our proposed scheme could
be implemented in both G711 p-law and A-law.

For the A-law, there is a file alaw.c in mediastreamer2 to handle it. There are two
functions to handle encoding and decoding which are called alaw_enc_process(...)
and alaw_dec_process(...), respectively. The flow chart of these two function are
almost the same as Figure 2.11, and all modifying steps could follow the steps shown
in Figure 2.12.

20

3. Quality Analysis of Scheme 1

Determining the quality of compressing is a very important issue is this scheme.
The value of Signal-to-Noise Ratio (SNR) will be better if higher quality is chosen,
but the size of secret speech also becomes bigger according to Table 2.1. It would
cause the value of r to increase, and make the speech significantly distorted. With the
increased noises, the attackers might easily notice the existence of the hiding speech.
On the other hand, if lower quality of compressing is chosen, the secret speech D will
get worse value of SNR. However, the smaller value of r makes the stego speech G
indistinguishable from the cover speech C, so the attackers could not notice the hiding
speech easily.

In this section, we will describe two methods with different parameter of r. Then
show the experimental results for two different quality levels in compression, and the
SNR for these cases.

3.1 Scheme 1 (r=3) and Scheme 1 (r=1)

In Scheme 1 (r=3), the quality of compressing in Speex is 6, and the Ns is
28-bytes. We assume the size of speech packet is Nc=160. According to formula (1),
we can get the value of r is 3.

In Scheme 1 (r=1), the quality of compressing in Speex is 1, and the Ns will be
10-bytes. We also assume the size of speech packet is Nc=160. According to formula

(1), we can get the value of r is 1.

3.2 Signal/Noise Ratio

We ran the experiment in an isolated network, to make sure that there is no
background traffic interfering the experiment. The same cover speech is utilized in all
testing. First, we test the original G.711 p-law speech (without information hiding)
and obtain the value of SNR is 5.237dB. This result will be compared with other
experimental results.

The cover speech is a 8.07MB audio file in WAV format, which is sampled at the
rate of 44.1kHz and quantized in 16 bits. The length of this WAV file is 48 seconds.
The measured value of SNR is 8.55dB. (All the SNRs in this subsection is obtained

21

by repeating the cover speech 8 times, i.e. totally 48*8=384 seconds, and calculating
the average.)

The size of secret speech is a 12.8MB audio file in WAV format, which is
sampled at the rate of 8kHz and quantized in 16 bits; the length of this the secret
speech is 274 seconds. The measured value of SNR is 4.22dB.

We consider the following three scenarios to measure the SNR value of the encoded
signals.

(a) We encode this cover speech by G711 p-law. The measured value of SNR is
5.237dB. This will be the base for comparing the following scenarios.

(b) We measure the stego speech G generated by the Scheme 1 (r=3), the value
of SNR is 4.596dB. Compared with (a), the noises are higher and they are easy to be
noticed by the attackers. The quality of compressing in Speex is 6, every 160 samples
with 16-bits sample-size will be compressed into 28-bytes, so the compression ratio is
320:28=11.43:1. The secret speech D is decompressed from the stego speech; its
value of SNR is 3.647dB.

(c) We measure the stego speech G generated by the Scheme 1 (r=1), the value of
SNR is 4.964. Compared with (b), the noises are lower and more difficult to be
noticed. The quality of compressing in Speex is 1, every 160 samples will be
compressed into 10-bytes, so the compression ratio is 320:10=32:1. The secret speech
D is decompressed from the stego speech; its value of SNR is 3.358dB. Although the
quality of secret speech here is lower, the noises of stego speech is also lower than
Scheme 1 (r=3), which makes it less discernible

The SNR value and compression ratio of different methods are shown in Table
3.1.

Table 3. 1 Compression ratio and SNR of different encoding methods

Method Compression | SNRof D | SNR of G
Ratio (dB) (dB)
None - - 8.55
G711p-law | - 4.22 5.237
Scheme 1 | 11.43:1 3.647 4.596
(r=3)
Scheme 1 | 32:1 3.358 4.964
(r=1)

22

3.3 Processing Time

In addition to the voice quality, we also want to make sure the performance of
this scheme can meet the real-time requirement of VoIP. Let us assume that the default
internal to send G.711 speech packets in Linphone is 20ms. In other words, every
speech packet must be encoded or decoded in 20ms, otherwise it will be dropped.

Our experiment is running on a Pentium 4 machine with 3.4GHz CPU and
512MB memory, with Linux Fedora Core 6 as the operating system. We ran 8000
iterations (and calculate the average) to measure the process time of each component
for encoding, decoding, compressing, and decompressing. The encoding and decoding
time in p-law are 0.003ms and 0.001ms, respectively. For the sender in the Scheme 1
(r=3), the compressing time is 0.249ms, and the time for storing the secret speech is
0.005ms. Therefore, the total time required for the sender is
0.249ms+0.005ms+0.003ms=0.257ms.

For the receiver, the decompressing time is 0.036ms, and the time for extracting
the secret speech is 0.003ms. Therefore, the total time required by the receiver is
0.036ms+0.003ms+0.001ms=0.04ms.

For the sender in the Scheme 1 (r=1), the compressing time is 0.252ms, the time
for storing the secret speech is 0.002ms. For the receiver, the decompressing time is
0.04ms, the time extracting the secret speech is 0.001ms. Therefore, the total time of
the sender is 0.252ms+0.002ms+0.003ms=0.257ms. Similarly, the total time of the
receiver is 0.04ms+0.001ms+0.001ms=0.042m:s.

Table 3. 2 Running time of Scheme 1 which (r=3) and (r=1)

Operation Scheme 1 (r=3) | Scheme 1 (r=1)
(ms) (ms)

S->S’ (Send) 0.249 0.252

Pick HS & Hide | 0.005 0.002

S’ (Send)

u-law (Send) 0.003 0.003

Total (Send) 0.257 0.257

Pick HS & |0.003 0.001

Reconstruct S’

(Recv)

S’->S (Recv) 0.036 0.04

u-law (Recv) 0.001 0.001

Total (Recv) 0.04 0.042

23

3.4 Summary

We test the stego speech G by the Scheme 1 (r=3), and then obtain the value of
SNR is 4.596dB. According to the result of experiment, the noises increase by 12%,
this makes big difference from the original speech. If an attacker catches the speech
packets, he could easily notice the noise, and then detects that there is secret
information inside stego speech.

Although the quality of secret speech decompressed by Speex in this method is
better, it introduces more noises into the stego speech. This contradicts with our
original goal for hiding speech.

The experimental environment is the same as Scheme 1 (r=3). We obtain the
value of SNR for this method is 4.964dB. According to the result of experiment, the
noises increase by 6%, which is not perceivable to human ears.

Although the quality of secret speech in this method is lower, it introduces fewer
noises into the stego speech. This result shows that the Scheme 1 (r=1) can achieve
our goal to confuse the attackers in speech hiding.

As shown in Figure 3.1, no matter the algorithm is implemented using Scheme 1
(r=3) or (r=1), the delay it introduced is shorter than 1ms, so this result shows that the

proposed scheme is suitable to be applied in real-time VoIP systems.

Send Recv
0258 —
. ms . ms 0.042ms
025 — .
0.04 <
023 —
02 -
0.1& . 0.03 -
[w-law {Send) | [ielaw {Read
0.15 T |JH Pick HS & Hid= Bl 55 (Reov)
013 I 3 (3end) I [OA&HS&
) [/ L Sy Reconstruct
e [5+5 (Send) iy
0.05 I
0.01 4
0.05 —
0.03 _ _
g I 0 :
Scheme 1 (=2) Scheme 1 (r=1) Scheme 1 {1=3) Scheme 1 {r=1)
(ms) {ms) {mz) (mz)

Figure 3. 1 Runtime of Scheme 1 which (r=3) and (r=1)

24

4. Scheme 2

In Scheme 1 (r=1), stego speech will increase 6% noise from cover speech. It is
good enough to achieve the goal that hiding secret speech but not be noticed.
Furthermore, the runtime in Scheme 1 (r=1) is less than 1 ms both in sender and
receiver. This shows that it would be normally done in real-time system.

However, there is the same potential problem both in Scheme 1 (r=1) and (r=3).
When attackers know the hiding space is allocated by LSB after they used data
analysis, moreover, they could use correct decompressing algorithm to obtain secret
speech. In other words, Scheme 1 would not provide enough protection as we
expected. We can’t guarantee that attackers would not understand every step in this
algorithm. Furthermore, we even need to assume that attackers will understand the
algorithm in detail. By the way, we should propose corresponding scheme for
avoiding this risk in Scheme 1.

The better way is to apply encryption algorithm. After compressing the secret
speech to get S, the next step is encrypting S’ to get encrypted speech S”. In the final
step, S” will hide into C to get G. If attackers don’t have secret key to decrypt S”,
they cannot get secret speech even if they successfully reconstructing S”’. The scheme
not only keeps the characteristic which is not easily noticed by attackers, but also has
information security by adopting encryption algorithm.

The second problem in Scheme 1 is that it can only hide static audio speech (e.g.
WAV audio file with G.711 encoding). Scheme 1 can’t provide the capability for the
purpose which a real-time calling needs protection. For this requirement, Scheme 2
can set the cover and the secret speech by the device or the static audio speech as we
wish. In hiding static audio speech, the device speech (e.g. microphone) would be the
cover speech. In hiding real-time speech, the static audio speech would be the cover
speech.

Figure 4.1 shows the flow chart of Scheme 2 in sender. The first step is to set the
cover and the secret speech, this is decided by user. In real-time calling situation, the
device speech will be the secret speech and the static audio speech will be the cover
speech. After compressing secret speech to get S’, for ensuring security of this
algorithm, the next step is to encrypt S’ to obtain the encrypted speech S™.

In the final step, S” will be hided into HS to get the stego speech G, then sending

G to the receiver.

25

Device Audio Al Secret Speech S 5’ "
2. Ccrmpressio;l% AES

. Hiding Secret
Encryption Speech imto
Cover
File Audio AZ Cover Speech C 5!1eech G
Set Secret Speech Allocating HS
& Cover Speech Hiding Space

Figure 4. 1 Flow chart of sender in Scheme 2
Figure 4.2 shows the flow chart of Scheme 2 in receiver. After receiving the
stego speech G by the receiver, the first step is allocating the hiding space HS. Next
step is to reconstruct S” from HS, then decrypting S”’ to get S’ by the same key which

the sender used for encrypting. The last step is to decompress S’ to obtain the secret

speech D for playing.
Stego Speech G HS
Allocating _
Hiding Space Reconstructing
5" from HS
S!
> AES D
. Decompression
Decryption

Figure 4. 2 Flow chart of receiver in Scheme 2

4.1 AES Encryption/Decryption

In Scheme 2, the Advanced Encryption Standard (AES) is adopted for encrypting
the secret speech. AES is a block cipher adopted as an encryption standard by the U.S.
government. It replaces the Data Encryption Standard (DES) and widely using in the
world.

AES was announced by National Institute of Standards and Technology (NIST)
as U.S FIPS PUB 197 on November 26, 2001, and then it becomes standard on May
26, 2002. The cipher was developed by Joan Daemen and Vincent Rijmen, so the AES
also known as “Rijndael* from the portmanteau of the names of the inventors.

AES is fast both in software and hardware, and it has little memory requirement.
AES has a fixed block size in 128 bits and the key size could be 128, 192, or 256 bits.
(i.e. 16, 24, 32 bytes) AES operates on a 4x4 array of bytes and the initial value is a
block of plaintext. There are four steps in one encryption round, AddRoundKey,
SubBytes, ShiftRows and MixColumns. [14]

Many public products use the 128-bits key which is enough for normal usage.

26

But in TOP SECRET information, either 192 or 256 key lengths will be required for
using. [1]

After introducing the AES, selecting adaptable length of key is very important.
The main factor of key length selecting is the size of hiding space. In Scheme 1,
hiding samples are picking up with interval one from the cover speech and modifying
the least significant r bit(s) as part of hiding space.

In Scheme 1 (r=3), modifying the least significant 3 bits for hiding. The total size
of hiding space is 28 bytes. However, the louder noise would be noticed by attackers.
In Scheme 1 (r=1), modifying the least significant 1 bits for hiding. The total size of
hiding space is 10 bytes. This scheme causes little distortions from the original speech,
so modifying the LSB is a better way for allocating hiding space.

The minimal key length of AES is 16bytes. By the way, this scheme must
provide hiding space bigger than 16 bytes. Scheme 1(r=1) can only provide hiding
space by 10 bytes, but this space is not enough for AES encryption.

To break this limitation, Scheme 2 uses new rule for selecting hiding samples. It
keeps the attribute of modifying the LSB in Scheme 1 (r=1), but changed the selecting
hiding samples without interval. By this way, the size of hiding space is increased by
2 times. In other words, it is 20 bytes. This result shows the size of hiding space

matches the requirement of minimal AES key length with 16 bytes.

4.2 Speech Hiding Space

As section 4.1 mentions in allocating the hiding space before, every cover speech
sample is used for hiding with modifying the LSB. The total size of hiding space is 20
bytes by section 4.1. There are 16 bytes for hiding the secret speech, and the
remaining 4 bytes is used for storing parameters of negotiation in sender and receiver.
Here we denote these 4 bytes as the control area.

Figure 4.3 shows the allocation of the hiding space. In these 20 bytes, #4 to #19
is called the data hiding area. This area is used for hiding secret speech whatever is
encrypted or not. #0 to #3 is the control area. #0 mainly is used for signaling control,

#1 for storing parameter and #2 to #3 is reserve for future using.

27

o1 2 3 |4 19

SIP| R Data Hiding

« #0 S signaling

. #1 P parameter
o #2~#3 R reserve

« #4~#19 DH data hiding

Figure 4. 3 Allocation of Hiding Space

Here we describe in detail of the control area. Every bit in #0 has different usage
for signaling. As Figure 4.4, #0 bit(0) means that if this packet using speech hiding or
not. If #0 bit(0) is 1, then whole flow chart of Scheme 2 is not executed. If #0 bit(0) is
0, then Scheme 2 is executed. It includes allocating the hiding space, compressing and
hiding the secret speech into the cover speech.

#0 bit(1) means that encryption algorithm is executed or not. If the value is 0, S’
is not encrypted. If it is 1, S” will encrypt to obtain S before hiding into C. The

remaining 5 bits (2~7) is reserved for future using.

| 7 21 1 0
Reserve A | H
#0 S
- (0) H speech hiding :1=true - O=false
- (1) A AES encryption :1=true - 0=false

- (2~T) R reserve

Figure 4. 4 Allocating of #0

When #0 bits(1) is 1, the #1 will store the AES round. There are two proposes for
recording the AES round. First is to decrypt correct secret speech D in receiver by
current round, second is to recover errors by packet loss. In the Internet, packet loss
situation can’t be fully avoided and should be carefully consider in this scheme. In
other words, the AES round should be included in Scheme 2.

As Figure 4.5 shown, #1 is 1 byte, this means the total rounds can be recorded
are 256. The value range of #1 is 0 to 255. #1 is increasing by 1 after one speech
packet encrypted. It will reset to O when #1 is bigger than 255. In other words,
Scheme 2 allows packet loss with maximal numbers of 256. This value could be
enough in Scheme 2. For example, if every G711 packet which is sanded by 20 ms, in
the worst case, packet communicating has been terminated longer about 5 seconds. In

other words, this call may be ended due to unexpected situation.

28

| 7 0
AES Rounds

#1 parameter
if #0(1) is true : #1 means AES rounds
Figure 4. 5 Allocating of #1

4.3 Compressing Secret Speech

Secret speech should be compressed before AES encrypting. To use the libspeex
as section 2.2 mentioned, the compressing quality must be set. According to the AES
key length by 16 bytes which Scheme 2 selected, the quality should be set to 2
according to the Table 2.1. The size of output data is 15 bytes. The selecting quality
not only can match the requirement of minimal key length by 16 bytes, but also

getting better quality of D than Scheme 1 (r=1).

4.4 Encrypting the Compressed Secret Speech

Figure 4.6 shows the relation of S’, S” and HS. For AES encrypting in 16 bytes,
the compressed speech needs to add one padding byte. The padding byte sets to O.
After AES encrypting, S” is hided into the data hiding area of HS. Because of
encryption is executed, #0 bit(1) is set by 1 and #1 stores the AES round in HS before

sending G to the receiver.

0 1 2 3|4 19
Is|P| R | Data Hiding | v
L'}
| AES Data s
L'}
‘ Speex Compressed Data ‘ p ‘ s

Figure 4. 6 Relation of S’, S and HS

4.5 Decrypting the Encrypted Secret Speech
In the receiver, the secret speech will be reconstructed from HS in G, but the

receiver still can’t be sure that this secret speech is encrypted or not. According to the
Figure 4.7, the first step is to check both #1 bit(0) and #1 bit(1) in HS is true. If they

29

both are true, then receiver can realize that whole flow chart of Scheme 2 and the AES
encryption is executed.

The second step is to check if the system AES round is equal to the packet AES
round. Here we denote the system AES round by Sr and the packet AES round by Pr.
St is recorded both in sender and receiver, and the Pr is exactly the value of #1 in HS.

If AES encryption is executed, the next step is to do one-round decryption and
increase Sr by one. Checking if Pr is equal to Sr for being sure that the secret speech
is correct by AES decrypting. If it is false, backing to do one-round decryption and
increase Sr by 1 till the value of Sr is equal to Pr.

Check
£0(0) and £0(1} is

1.Do one+ound
decryption to get 5
2.85r=5r+1

Sr : System AES Round
Pr : Packet AES Round

Check Prequal Sr Y

|Ending of the decrvption|

Figure 4. 7 Flow chart of decrypting

4.6 Linphone implementation

We also implement this real-time speech hiding scheme in Linphone to verify the
performance of the algorithm. As Figure 4.8 in ulaw_enc_process shown, the first step
is to set the secret speech and the cover speech. The speech source could be the device
audio array A or the static audio array Af. The second step is compressing S to get S’.
Next, encrypting S’ to get S”. In the end, hiding S into the cover speech to obtain G.

On the other hand, there is an additional decryption step after reconstructing S”
from A’ in ulaw_dec_process. The decryption should follow the flow chart of section

4.5; the receiver will acquire correct secret speech D to play.

30

ulaw_enc_preocess

Read Audio Array
from memory

v
A

Read Audio File

Af

Set Secret Speech
& Cover Speech

: :

) '
Get S' from S f24aw Encode
Get $” from 8’

v c’

s”

i l

| Hide S into HS |

ulaw_dec_preocess

Read Media Stream
from RTPreceiver

T.
Get S from A’

Get S’ from S”
GetD from S’

]
X

A
: 1

Figure 4. 8 Modifying the data flow in ulaw.c

To implement the AES encryption and decryption in Figure 4.8, we choose a
library of AES. The library is built by Brian Gladman, the algorithm code can be used
in C/C++ and Pentium family assembler [15]. The most advantage of the library is
simply implementing AES, and all codes are very light. It is the reason which why we
choose the library in the scheme. To adopt this library, the first step is to include the
aes.h header file. The function aes_enc_blk(...) can process encrypting, and the
function aes_dec_blk(...) can decrypt reversely.

Here we make a header file aesmatt.h to handle AES processing. For a start,
aesmatt.h should be included in ulaw.c. The function aesinit(...) must be processed
both in sender and receiver. In ulaw_enc_process, aesencode(...) is added for
processing AES encrypting. In ulaw_dec_process, aesdecode(...) is added for

handling one-round or multi-round decrypting for packet loss recover.

4.7 G711 p-law and A-law

As section 2.6 mentioned before, G711 p-law and A-law are very similar in
coding algorithm. To implement A-law in Linphone, two functions need to be
These

alaw_dec_process(...). The flow chart of them also could be referenced in Figure 2.11,

modified in alaw.c. two functions are alaw_enc_process(...) and

and all modifying steps could follow the steps shown in Figure 4.8.

31

5. Quality Analysis of Scheme 2

5.1 Signal/Noise Ratio

We also ran the experiment in an isolated network. To compare the result from
Scheme 1, the same cover and secret speech in chapter 3 are utilized in this
experiment.

The measured value of SNR of stego speech in Scheme 2 is 5.017dB. The quality
of compressed secret speech is 2, every 160 samples with 16-bits sample-size will be
compressed into 15-bytes, so the compression ratio is 320:15=21.33:1. The value of
SNR of secret speech D is 3.454dB.

The SNR value and compression ratio of Scheme 1 (r=1) and Scheme 2 are
shown in Table 5.1.

Table 5. 1 Compression ratio and SNR of different encoding methods

Method Compression | SNR of D | SNR of G
Ratio (dB) (dB)

None - - 8.55

G711p-law | - 4.22 5.237

Scheme 1 | 32:1 3.358 4.964

(r=1)

Scheme 2 21.33:1 3.454 5.017

5.2 Processing Time

We also want to ensure the performance of Scheme 2 can meet the real-time
requirement of VoIP. Every speech packet also must be encoded or decoded under
20ms, otherwise it will be dropped.

Our experiment is running on the same machine and operating system from
section 3.2. We also ran 8000 iterations (and calculate the average) to measure the
process time of each component for encoding, decoding, compressing, decompressing,
encrypting, and decrypting. The encoding and decoding time inp-law are also
0.003ms and 0.001ms, respectively.

For the sender in Scheme 2, setting the cover and the secret speech needs
0.002ms, the compressing time is 0.25ms, the encrypting time is 0.021ms, and the

time for storing the secret speech is 0.004ms. Therefore, the total time required for the

32

sender is 0.002ms+0.25ms+0.021ms+0.004ms+0.003ms=0.28 ms.

For the receiver in Scheme 2, the decompressing time is 0.038ms, the decrypting
time is 0.005ms, and the time for allocating HS and reconstructing S” is 0.002ms.
Therefore, the total time required for the
0.038ms+0.005ms+0.002ms+0.001 ms=0.046m:s.

Table 5. 2 Running time of Scheme 1 (r=1) and Scheme 2

receiver is

Scheme 1 (r=1)
(ms)

Operation Scheme 1 (r=1) | Scheme 2
(ms) (ms)
Set C and S - 0.002
S->S’ (Send) 0.252 0.25
S’->S” (Send) - 0.021
Pick HS & Hide S” | 0.002 0.004
(Send)
pu-law (Send) 0.003 0.003
Total (Send) 0.257 0.28
Pick HS & | 0.001 0.002
Reconstruct S”
(Recv)
S”->S” (Recv) - 0.005
S’->S (Recv) 0.04 0.038
p-law (Recv) 0.001 0.001
Total (Recv) 0.042 0.046
Send Recv
0.28ms 005 0.046ms
70.042ms
0.04 I
W aw (Send) T [Owaw Reoy)
Dggg{«svlﬁd?mue 0.03 - Egss Recv)
[]s=8" (Senq) — | Recw)
B e P
0.01 —
0 .

Scheme 2 (ms)

Scheme 1
(r=1) (ms) (ms)

Scheme 2

Figure 5. 1 Runtime of Scheme 1 which (r=1) and Scheme 2

33

5.3 Summary

The SNR value of Scheme 2 is close to Scheme 1(r=1) and makes little distortion
from the original speech. This experimental result shows that Scheme 2 also has the
advantage which is not easily noticed by attackers.

The total required time both in the sender and the receiver are shorter than 1ms,
so this result shows that Scheme 2 is also suitable to be applied in real-time VoIP
system.

In addition, Scheme 2 can provide protection of secret speech even if attackers
successfully reconstructed S, in other words, Scheme 2 can provide more applicable

security than Scheme 1.

34

6. Conclusion and Future Work

In this thesis, we proposed a scheme for real-time speech hiding. By hiding the
secret speech into the cover speech, which sounds like a normal audio stream, it
would prevent eavesdroppers from knowing the existence of the secret speech. This
would increase the security of VoIP systems when the voice is transported over
Internet, which is an insecure channel where network packets may be eavesdropped.
By applying Speex to compress the secret speech, we are able to hide it in a smaller
space. The choice of quality in the compression will result in different compression
size.

In our experiment of Scheme 1, choosing higher quality as level 6 requires 3 bits
in a sample packet to be replaced, and thus makes the noise notable (SNR=4.596dB).
To make it less obvious, lower quality as level 1 was chosen, and only 1 bit in each
sample packet will be replaced. This proved to be a better approach, with
SNR=4.964dB, which is superior to the previous experiment where 3 bits were
allocated to store the secret speech.

In Scheme 2, all samples are selected to hide the secret speech to get larger space.
The value of SNR in Scheme 2 (5.017dB) is close to the value of Scheme 1 (r=1).
This result shows that Scheme 2 can keep the advantage of speech hiding as shown in
Scheme 1. By applying AES encryption algorithm after compressing the secret speech,
we could further enhance the security of the secret speech.

Current VoIP applications generally incorporate multimedia channels, including
audio, video, and text. = With successfully speech hiding in real-time VoIP
applications, naturally it would be interesting to investigate the possibility to apply
similar techniques to real-time image hiding or text hiding in a multimedia session to

improve the overall security on the communication system in the future.

35

Reference

10.
1.

12.

13.
14.

15.

CNSS Policy No. 15, Fact Sheet No. 1, National Policy on the Use of the
Advanced Encryption Standard (AES) to Protect National Security Systems and
National Security Information , June 2006
[http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf]

FEA.P. Peticolas, R.J. Anderson, and M.G. Kuhn, “Information Hiding — A
Survey”, IEEE Trans. Proc. Thy, Vol. 87, No.7, pp. 1062-1078, July 1999.
Christian Grothoff, Krista Grothoff, Ludmila Alkhutova,Ryan Stutsman, and
Mikhail J. Atallah. “Translation-based steganography”. In Proceedings of
Information HidingWorkshop (IH 2005), pages 213-233. Springer-Verlag, 2005.
Bao, P.and Xiaohu Ma, “MP3-resistant music steganography based on dynamic
range transform”, IEEE International Symposium on Intelligent Signal
Processing and Communication Systems (ISPACS 2004), 18-19 Nov. 2004,
pp.266-271.

EasyBMP [http://easybmp.sourceforge.net/steganography.html]

Dorian A. Flowers, “Investigating Steganography”, ACM-SE 42, April 2004
Chin-Chen Chang, Richard Char-Tung Lee, Guang-Xue Xiao, Tung-Shou Chen
“A new speech hiding scheme based upon subband coding”, IEEE Information,
Communications and Signal Processing, 2003 and the Fourth Pacific Rim
Conference on Multimedia.

ITU-T Recommendation G.711. Pulse Code Modulation for voice frequencies,
Now. 1988.

Daniel Collins, Carrier Grade Voice over IP, 2nd Ed., McGraw-Hill, September
2002.

Speex [http://www.speex.org/]

J.P. Campbell, Jr., T.E. Tremain and V.C. Welch, The Federal Standard 1016
4800 bps CELP voice coder, Digital Signal Processing 1:145-154 (1991).

Speex Reference Manual 1.2-beta2
[http://www.speex.org/docs/api/speex-api-reference.pdf]

Linphone [http://www.linphone.org/]

FIP PUB 197 : the official AES standard
[http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf]

Implements of AES (Rijndael) in C/C++ and Assembler, Brian Gladman

[http:// fp.gladman.plus.com]

36

Appendix

Appendix 1. Codes of Scheme 1

Linphone/mediastreamer2/src/ulaw.c

/lmsfilter.h is modified for Scheme 1
#include "mediastreamer2/msfilter.h"

#include "g711common.h"

/Including Scheme 1 related file
#include "g711matt.h"

#include "speexmatt.h"

/*
g711lmatt.h+
| -encodel(...) Allocating HS and Hiding S’ into C (r=3)
| -encode9(...) Allocating HS and Hiding S’ into C (r=1)
| -decode1(...) Allocating HS and Reconstructing S’ from G (r=3)
[-decode9(...) Allocating HS and Reconstructing S’ from G (r=1)

speexmatt.h+
| -speex_encode_data(...) Decompressing S’ to get D (r=3)
| -speex_decode_data(...) Decompressing S’ to get D (r=1)
[-...

*/

/laudiostream.c is modified for Scheme 1

static void ulaw_enc_process(MSFilter *obj){

37

while (ms_bufferizer_read(bz,buffer,size_of pcm)==size_of pcm){
mblk_t *o=allocb(size_of pcm/2,0):
nt i
/[*0->b_wptr means the array which is encoded by G.711 mu-law
/IGint16_t*)buffer means the array
I which is loaded from device (microphone)
for (i=0si<size_of pcm/2:i++){

0->b_wptr=s16_to_ulaw(((int16_t)buffer)[il):

0->b_wptr++;

/[Declaring variables
char * hidden;

int h_size;

/Loading audio array from file and compressing by Speex to get S'

speex_data_output(hidden, obj);

//Allocating HS and hiding S' into HS by Scheme 1
switch(obj->g711matt_mode_enc) {
/IScheme 1 (r=3)
case 1:
h_size = 28;
hidden = (char *)(malloc(h_size));
encode1(o, size_of pcm/2 hidden, h_size);
break:
/IScheme 1 (r=1)
case 9:
h_size = 10;
hidden = (char *)(malloc(h_size));

encode9(o, size_of_pcm/2 hidden, h_size);

mblk_set_timestamp_info(o,dt->ts);
dt->ts+=size_of_pcm/2;

ms_queue_put(obj->outputs[0],0);

38

static void ulaw_dec_process(MSFilter *obj){
mblk_t *m;
while((m=ms_queue_get(obj->inputs[0]))!=NULL){
mblk_t *o;
msgpullup(m,-1);
o=allochb((m->b_wptr-m->b_rptr)*2,0):

forCm->b_rptr<m->b_wptrim->b_rptr++,0->b_wptr+=2){

((int16_t)(0->b_wptr))=ulaw_to_s16(*m->b_rptr);

/[Declaring variables

int size = 160;

char * samples;

short * hidden = (short *)(malloc(320));

/[Allocating HS and reconstruting S' by Scheme 1
switch(obj->g711matt_mode_dec) {
/IScheme 1 (r=3)
case 1:
samples = (char *)(malloc(30)):
decode1(m, size, 1);
break:
/IScheme 1 (r=1)
case 9:
samples = (char *)(malloc(29)):
decode9(m, size, 7, samples);
break:

if(obj->g711matt_channel _dec == 1) {
/[Decompressing S' to get D
speex_dec_data(obj, samples, hidden);

39

/ISetting D back into speech array which will play by device(player)

0->b_wptr-=(2*size);

for(i=0si<size:i++,0->b_wptr+=2){
((int16_t)(o->b_wptr))=hiddenlil:

freemsg(m);

ms_queue_put(obj->outputs[0],0);

Linphone/mediastreamer2/include/mediastreamer2/msfilter.h

struct _MSFilter{
MSFilterDesc *desc:
[*protected attributes */
ms_mutex_t lock;
MSQueue **inputs;
MSQueue **outputs;
MSFilter Notify Func notify:
void *notify_ud;
void *data;
struct _MSTicker *ticker;
[*private attributes */
uint32_t last_tick:

bool_t seen;
/IScheme 1
llencode by (r=3) or (r=1)

int g711matt_mode_enc;

int g711matt_mode_dec;

40

//0'normal channel
//1:secret channel

int g711matt_channel_dec:

int g711matt_state_enc:

int g711matt_state_dec;

/l0:play cover speech one time
/1:repeating play cover speech

int replaymode;

llcover speech file keeper
FILE * fin;

char * filename;

/lwav file header struct

void * wh;

/lindex of playing wav file

int file_index;

[Istruct which is need in speex encoding
void * g711_enc_state;

SpeexBits g711_enc_bits;

/Istruct which is need in speex decoding
int speex_dec_needInit;
void * speex_dec_state;

SpeexBits speex_dec_bits;

Linphone/mediastreamer2/src/audiostreamer.c

#include "command_line.h"

41

/*
command_line.h+

| -command_loop(...) Loading user commands
*/

* qudio_stream_start_fullRtpProfile *profile, int locport, const char

AudioStream
*remip,int remport, int payload,int jitt_comp, const char *infile, const char *outfile,
MSSndCard *playcard, MSSndCard *captcard, bool_t use_ec)

{

/ISet encode/decode mode in Scheme 1
/11:Scheme 1 (r=3)

119:Scheme 1 (r=1)
stream->encoder->g711matt_mode_enc = 9;
stream->decoder->g711matt_mode_dec = 9;

stream->decoder->g711matt_channel_dec = 0;

/IWav file of Cover speech related
stream->encoder->replaymode = 1;
stream->encoder->fin = NULL;

stream->encoder->filename = "/root/hidden.wav";

/MInit encode/decode state
stream->encoder->g711matt_state_enc = ENC_STATE_NONE;
stream->decoder->g711matt_state_dec = DEC_STATE_NONE;

/MLoading user command by pThread

hidden_controler * he = (hidden_controler *)(malloc(sizeof(hidden_controler))):
hc->g711enc = stream->encoder:;

he->g711dec = stream->decoder:;

pthread_t pid:

pthread_create(&pid, NULL, command_loop, (void *)hc);

/ISpeex decode Init setting

stream->decoder->speex_dec_needInit = 1;

42

return stream;

43

Appendix 2. Codes of Scheme 2

Linphone/mediastreamer2/src/ulaw.c

/lmsfilter.h is modified for Scheme 2
#include "mediastreamer2/msfilter.h"

#include "g711common.h"

/Including Scheme 2 related file
#include "g711matt.h"
#include "speexmatt.h"

#include "aesmatt.h"

/*
g711lmatt.h+

| -encode9(...) Allocating HS and Hiding S' into C

[-decode9(...) Allocating HS and Reconstructing S' from G
| -setParameter(...) Setting #0~#3

| -getParameter(...) Getting #0~#3

speexmatt.h+
order_mode(0)

| -speex_data_output(...)

order_mode(1)
| -speex_init(...)

| -speex_read_data(...)

| -speex_encode_data_part(...)

| -speex_dec_data(..)
[-...

aesmatt.h+

Loading audio array from wav file

and compressing S to get S'

Init Speex
Loading audio array from wav file

Compressing S to get S'

Decompressing S' to get D

44

| -aesinit(...) AES encryption/decryprion Init
| -aesencode(...) AES encoding
| -aesdecode(...) AES decoding

*/

static void ulaw_enc_process(MSFilter *obj){

while (ms_bufferizer_read(bz,buffer,size_of pcm)==size_of pcm){
/[Declaring variables
nt i;
char * hidden:
int h_size =16, h_dis =1, h_start = 32;
hidden = (char *)(malloc(h_size));

llorder_mode
//0:Using wav file for cover speech
if(obj->order_mode == 0) {
/[Loading audio array from wav file
/I and compressing S to get S'
speex_data_output(hidden, obj);
H
/11:Using device(microphone) for cover speech
else if(obj->order_mode == 1){
/£ this is first time to run the ulaw_enc_process(...)
/I, open the audio file pointer
if(obj->g711matt_state_enc == 0) {
OpenFIN(obj):

speex_init(obj):

obj->g711matt_state_enc = 10;

short * file_clip = (short *)(malloc(320));

/Loading audio array from wav file

45

speex_read_data(file_clip, obj):

/[Exchanging device memory array & file_clip
/ICopying device memory array to temp array
int temp[160];
for(i=0:i<160:i++)

templil = ((int16_t*)buffer)[il;

/[Setting file audio array to device memory array

for(i=0;i<160;i++)
((int16_t*)buffer)[il = file_cliplil:

//Copying temp array to file_clip
for(i=0;i<160:i++)
file_clip[il = templil;

/ICompressing S to get S
speex_encode_data_part(hidden, file_clip, obj);

/IAES encryption

/[For getting S" from S'

if(obj->aes_enc_needInit)
aesinit(obj, 1)

if(obj->need AES)

aesencode(hidden, obj);

mblk_t *o=allocb(size_of pcm/2,0):
for (i=0si<size_of pcm/2:i++){
0->b_wptr=s16_to_ulaw(((int16_t)buffer)[il):

0->b_wptr++;

/[Allocating HS
if(obj->needHidden) {
switch(obj->g711matt_mode_enc) {
case 9:
h_size = 16;

46

encode9(o, size_of pcm/2, hidden, h_size, h_start, h_dis);
break;

l[Setting #0~#3

setParameter(o,obj,size_of pcm/2);

mblk_set_timestamp_info(o,dt->ts):
dt->ts+=size_of_pcm/2;

ms_queue_put(obj->outputs[0],0);

static void ulaw_dec_process(MSFilter *obj){

mblk_t *m;
while((m=ms_queue_get(obj->inputs[0]))!=NULL){
mblk_t *o;
msgpullup(m,-1);
o=allochb((m->b_wptr-m->b_rptr)*2,0):

/[Declaring variables

int size = 160;

char * samples:

short * hidden = (short *)(malloc(320));

/lgetParameter to set #0~#3
getParameter(m, obj);

forCm->b_rptr<m->b_wptrim->b_rptr++,0->b_wptr+=2){

((int16_t)(0->b_wptr))=ulaw_to_s16(*m->b_rptr);

/[Allocating HS and reconstruting S' by Scheme 2
switch(obj->g711matt_mode_dec) {

case 9:
samples = (char *)(malloc(16));
decode9(m, size, 32, 1, samples);
break:

IIAES decryption

/[For getting S' from S"

if(obj->aes_dec_needInit)
aesinit(obj, 0);

if(obj->needDeAES)
aesdecode(samples, obj)):

llaesdecode(...) will looping do one-round till Sr == Pr

//[Checking Sr == Pr
/Tf true, than decompressing S" to get secret speech D

if((obj->aes_dec_round-1) == obj->aes_dec_round_read) {

if(obj->g711matt_channel _dec == 1) {
/[Decompressing S" to get secret speech D
speex_dec_data(obj, samples, hidden);

0->b_wptr-=(2*size);
for(i=0:i<size:i++,0->b_wptr+=2){

((int16_t)(o->b_wptr))=hiddenlil;

freemsg(m);

ms_queue_put(obj->outputs[0],0);

48

Linphone/mediastreamer2/include/mediastreamer2/msfilter.h

struct _MSFilter{
MSFilterDesc *desc:
[*protected attributes */
ms_mutex_t lock;
MSQueue **inputs;
MSQueue **outputs;
MSFilter Notify Func notify;
void *notify_ud;
void *data;
struct _MSTicker *ticker;
[*private attributes */
uint32_t last_tick:

bool_t seen;

/IScheme 2

int g711matt_mode_enc;

int g711matt_mode_dec;

//0'normal channel
//1:secret channel

int g711matt_channel_dec:

int g711matt_state_enc:

int g711matt_state_dec;

/l0:play cover speech one time
/1:repeating play cover speech

int replaymode;

llcover speech file keeper
FILE * fin;

char * filename;

/lwav file header struct

void * wh;

/index of playing wav file

int file_index;

[Istruct which is need in speex encoding
void * g711_enc_state;

SpeexBits g711_enc_bits;

[Istruct which is need in speex decoding
int speex_dec_needInit;
void * speex_dec_state;

SpeexBits speex_dec_bits;

llorder_mode determine exchanging device & file_clip or not

int order_mode;

IIAES encryption/decryption Init
int aes_enc_needInit;

int aes_dec_needInit;

llstruct which is need in AES encryption

char * aes_enc_cp;

char * aes_enc_key;

aes_ctx aes_enc_ctx[1];

int aes_enc_round;

char aes_enc_buf[BLOCK_LENI, aes_enc_dbufl2 * BLOCK_LENI;

llstruct which is need in AES decryption
char * aes_dec_cp;

char * aes_dec_key;

aes_ctx aes_dec_ctx[1];

int aes_dec_round, aes_dec_round_read:
char aes_dec_buf1[BLOCK_LENI;

char aes_dec_buf2[BLOCK_LENI;

50

char aes_dec_dbuf[2 * BLOCK_LENI;
char *aes_dec_bl, *aes_dec_b2, *aes_dec_bt;

int aes_dec_i_dbuf;

1#0~#3

int needHidden;
int needAES;

int needDeHidden;
int needDeAES;

Linphone/mediastreamer2/src/audiostreamer.c

#include "command_line.h"

/*
command_line.h+

| -command_loop(...) Loading user commands
*/

*

AudioStream * audio_stream_start_full(RtpProfile *profile, int locport, const char

*remip,int remport, int payload,int jitt_comp, const char *infile, const char *outfile,
MSSndCard *playcard, MSSndCard *captcard, bool_t use_ec)
{

[* create ticker */

stream->ticker=ms_ticker new();

ms_ticker attach(stream->ticker,stream->soundread):

51

ms_ticker attach(stream->ticker,stream->rtprecv):

/ISet encode/decode mode in Scheme 2
stream->encoder->g711matt_mode_enc = 9;
stream->decoder->g711matt_mode_dec = 9;

stream->decoder->g711matt_channel_dec = 0;

//Wav file of Cover speech related
stream->encoder->replaymode = 1;
stream->encoder->fin = NULL:

stream->encoder->filename = "/root/hidden.wav";

l[Exchange device & file_clip by order_mode

stream->encoder->order_mode = 1;

/Init encode/decode state
stream->encoder->g711matt_state_enc = ENC_STATE_NONE;
stream->decoder->g711matt_state_dec = DEC_STATE_NONE;

stream->decoder->speex_dec_needInit = 1;

IIAES encryption/decryption
/ISetting AES key (you could set the key value which want)
stream->encoder->aes_enc_cp = "000102030405060708090A0BOCODOEOE";
stream->decoder->aes_dec_cp ="000102030405060708090A0BOCODOEOE";
stream->encoder->aes_enc_round = 0;
stream->decoder->aes_dec_round = 0;
stream->decoder->aes_dec_round_read = 0;
stream->encoder->aes_enc_needInit = 1;

stream->decoder->aes_dec_needInit = 1;

l[Setting #0~#3
stream->encoder->needHidden = 1;
stream->encoder->need AES = 1;
stream->decoder->needDeHidden = 0;

stream->decoder->needDeAES = 0;

/[Loading user command by pThread

hidden_controler * he = (hidden_controler *)(malloc(sizeof(hidden_controler))):

52

hc->g711enc = stream->encoder:;

hc->g711dec = stream->decoder:;

pthread_t pid:
pthread_create(&pid, NULL, command_loop, (void *)hc):

return stream;

Linphone/mediastreamer2/src/Makefile

#Scheme 2 need to compile with AES lib
MLIB="-I../../../mediastreamer2/src
MFLAG= $(MLIB)/aescrypt.o $(MLIB)/aeskey.o $(MLIB)/aestab.o

.C.0:

if §(COMPILE) -MT $@ -MD -MP -MF "$(DEPDIR)/$*.Tpo" -¢ -0 $@ $(MFLAG)
< ¥

then mv -f "$(DEPDIR)/$*. Tpo" "$(DEPDIR)/$* . Po"; else rm -f
"$(DEPDIR)/$*.Tpo"; exit 1; fi

.c.obj:

if §(COMPILE) -MT $@ -MD -MP -MF "$(DEPDIR)/$*.Tpo" -¢ -0 $@ $(MFLAG)
*$(CYGPATH_W) '$<'; ¥

then mv -f "$(DEPDIR)/$*.Tpo" "$(DEPDIR)/$*.Po"; else rm -f
"$(DEPDIR)/$*.Tpo"; exit 1; fi

.c.Jo:

if $S(LTCOMPILE) -MT $@ -MD -MP -MF "$(DEPDIR)/$*.Tpo" -c -0 $@
$(MFLAG) $<; ¥

then mv -f "$(DEPDIR)/$*. Tpo" "$(DEPDIR)/$* Plo"; else rm -f
"S(DEPDIR)/$* Tpo' exit 1; fi

53

Linphone/mediastreamer2/libtool

#Scheme 2 need to compile with AES lib
MFLAG=". ./src/aescrypt.o ../src/aeskey.o ../src/aestab.o"

archive_cmds="$§CC -shared ¥$MFLAG ¥¢$libobjs ¥S$deplibs ¥$compiler_flags

¥${wl}-soname ¥$wl¥$soname -o ¥$lib"

54

