
國立暨南國際大學資訊工程學系

碩士論文

應用於智慧電網管理之通訊協定 SIP/SNMP 效能量測研

究

On Network Performance Evaluation toward the Smart

Grid: A Case Study of SIP and SNMP

指導教授：吳坤熹博士

研究生：鐘揮雄

中華民國一○一年七月二十三日

國立暨南國際大學資訊工程學系

碩士論文

應用於智慧電網管理之通訊協定 SIP/SNMP 效能量測研

究

On Network Performance Evaluation toward the Smart

Grid: A Case Study of SIP and SNMP

指導教授：吳坤熹博士

研究生：鐘揮雄

中華民國一○一年七月二十三日

II

致謝

 在我就讀國立暨南國際大學資工系的這段期間內，吳坤熹老師是我最尊敬，也是

最感謝的一位老師。 由大三開始的專題指導教授一直到碩士班為止，吳坤熹老師不

單單教育我學術研究上的知識，也教育了我該如何用正確的心態去面對生活中的事物。

大學時的我，不僅僅對於學習開始找不到方向，也漸漸的開始對學習失去了信心以及

興趣。 但是研究所的生活中，我透過學習得到了成就，也找回了對學習的熱誠。 在

大學三年級至碩士班畢業的這段時間內，我衷心的感謝吳坤熹老師對我的悉心指導。

 感謝實驗室的學長、同學以及學弟妹們，不僅僅在我研究有問題時可以互相討論，

一起聚餐時更是可以分享工作經驗以及各種搞笑的事蹟。 感謝意姍學妹擔負起了實

驗室便當小精靈的重要角色，讓實驗室的大家常常有好東西可吃!

 最後我要感謝我的家人，我的父母提供我一個沒有憂慮的成長環境，也讓我無後

顧之憂地完成我的學業。 感謝我的姊姊以及哥哥，在我曾經困難時對我的理解以及

支持。

 感謝曾經幫助過我的所有人，我衷心的感謝你們。

III

論文名稱：應用於智慧電網管理之通訊協定 SIP/SNMP 之效能量測研究

校院系：國立暨南國際大學科技學院資訊工程學系 頁數：49

畢業時間：中華民國一○一年七月 學位別：碩士

研究生：鐘揮雄 指導教授：吳坤熹博士

摘要

隨著能量消耗的議題日趨受到重視，智慧電網已開始在日常生活中被應用。然而

在現今智慧電網的建設中，卻缺乏通用的管理機制，也致使不同廠商所開發的智慧電

網設備無法互相通訊。Session Initiation Protocol（SIP）過去為一個被廣泛使用在網路

電話的通訊協定；但在本篇研究中，利用 SIP控制網路家電的特性，作為智慧電網管

理的一套通用機制。另一個被廣泛使用於網路管理的通訊協定 Simple Network

Management Protocol（SNMP），也適合作為智能電網管理之協定。本論文將兩協定分

別移植至嵌入式系統，並比較其運作效能。初步結論為 SIP 的速度較快，但所佔記憶

體空間較大。未來可依不同設備之特性，選用合適之管理協定。

關鍵詞：SIP；SNMP；智慧電網

IV

Title of Thesis: On Network Performance Evaluation toward the Smart Grid: A Case Study

of SIP and SNMP

Name of Institute: Department of Computer Science and Information Engineering, College

of Science and Technology, National Chi Nan University Pages: 49

Graduation Time: July 2012 Degree Conferred: Master

Student Name: Hui-Hsiung Chung Advisor Name: Dr. Quincy Wu

Abstract

As the energy consumption issue is getting critical, in many countries Smart Grid has

become widely adopted in daily life. However, one major obstacle of the development of

Smart Grid is that, the products from different vendors cannot communicate with each

other easily, due to the absence of a general managing mechanism. Session Initiation

Protocol (SIP) has been widely used in Voice over Internet Protocol (VoIP). However, it

was also adopted as a protocol to control network appliances. In this thesis, we utilize SIP

as a common mechanism to support Smart Grid management. Meanwhile, another

candidate is the Simple Network Management Protocol, which is also a popular protocol

in managing IP devices. In this work, both protocols were implemented on a real

embedded platform, and the performance is further evaluated and compared. The

experimental results showed that the SIP protocol stack occupies more memory space,

but its response time is shorter. In choosing which management protocol to adopt,

device manufacturers can make the technical choices according to whether they need to

save the memory space or the response time.

Key words: SIP; SNMP; Smart Grid

V

Contents

致謝 .. II

摘要 .. III

Abstract ... IV

Contents... V

List of Figures ... VI

List of Tables .. VII

Chapter 1. Introduction .. 1

Chapter 2. Related Works ... 7

2.1 SNMP in Home Automation ...7

2.2 SIP in Home Automation ..8

2.3 XMPP in Home Automation ...9

Chapter 3. System Architecture .. 12

3.1 .Components .. 12

3.2 Protocols .. 13

3.2.1 Internet Protocol version 4 ... 15

3.2.2 Internet Protocol version 6 ... 17

3.2.3 Simple Network Management Protocol ... 19

3.2.4 Session Initiation Protocol ... 22

3.3 Services .. 24

Chapter 4. Implementation and Performance Evaluation....................................... 27

4.1 Implementation .. 28

4.1.1. Kernel Porting .. 28

4.1.2 File System.. 30

4.2 Performance Evaluation .. 32

4.2.1 Performance Analysis .. 32

4.2.2 Experiment Analysis .. 33

Chapter 5. Conclusion and Future Work ... 37

References .. 38

Appendix: Procedures in Preparing the Experimental Environment 42

A.1 Kernel configuration SOP of DMA-2440 .. 42

A.2 File system configuration SOP of DMA-2440 ... 44

A.3 Cross-compile Net-SNMP for the ARM architecture 48

A.4 Cross-compile Sofia-SIP for the ARM architecture 49

VI

List of Figures

Figure 1 Smart Grid [2]..1

Figure 2 Microgrid...3

Figure 3 Common protocol stacks in Smart Grid ..4

Figure 4 NAT traversal in SNMP ...5

Figure 5 NAT traversal in SIP ..6

Figure 6 SNMP in Home automation ...8

Figure 7 SIP in Home automation ..9

Figure 8 The flow of fault detection of digital refrigerator.............................. 10

Figure 9 Number of IEEE papers ... 11

Figure 10 System Architecture ... 12

Figure 11 Protocol models ... 14

Figure 12 A basic network which is part of the Internet 15

Figure 13 IPv4 header .. 16

Figure 14 IPv6 header .. 18

Figure 15 EUI-64 generation.. 19

Figure 16 SNMP messages exchanging .. 21

Figure 17 The registration tree [31] .. 22

Figure 18 SNMP in Microgrid ... 25

Figure 19 SIP in Microgrid .. 26

Figure 20 Example of Smart Grid management in SIP 27

Figure 21 Protocol stack of SNMP management mechanism 28

Figure 22 Protocol stack of SIP management mechanism 28

Figure 23 Kernel configuring ... 30

Figure 24 BusyBox configuring ... 31

Figure 25 Embedded system start up .. 32

Figure 26 Messages sent in Limited time ... 35

Figure 27 Transmission time required for messages 35

VII

List of Tables

Table 1 Protocol values of IPv4 header [24] ... 16

Table 2 SIP request messages... 23

Table 3 SIP response messages .. 24

Table 4 Execution time analysis for each protocol.. 33

Table 5 Experiment result of limited time .. 33

Table 6 Experimental result of Total messages ... 34

Table 7 Footprints of SNMP and SIP ... 36

1

Chapter 1. Introduction

It is believed that in the twenty-first century, there will be over seven billion people

on earth. Inevitably, people will face the problem of living with scarce resources. With the

finite resources, we need to utilize these resources efficiently. Energy, the resource

supporting the modern industry and our everyday lives, is a limited resource that human

being must carefully manage and utilize, to ensure the sustainability of our society. In 2005,

Smart Grid was brought up as an emerging cyber-physical system [1], whose idea is shown

in Figure 1.

Figure 1 Smart Grid [2]

2

Smart Grid delivers electricity from suppliers to consumers. It incorporates power

infrastructures with two-way communication technologies [3]. Smart Grid combines with

power systems, telecommunications, smart energy devices and digital controllers [4]. As

shown in Figure 1, Smart Grid integrates different technologies into a universal system.

With Smart Grid, people will be able to control electric appliances remotely. Furthermore,

the information such as temperature, humidity and power consumption, can be collected by

smart devices and delivered to administrators by Smart Grid Networks. Therefore, even

when people are far away, they can keep aware of every detail of their houses. Smart Grid

not only helps people to live in a smarter style, but also helps people to get more efficiency

in electric power utilization. In many countries, there is a policy of Critical Peak Pricing

(CPP), which charges higher price for electricity in peak hours. With the assistance of

Smart Grid, it is possible to collect the information of power usage by smart devices,

figure out the tendency of power consumption in a house, and remind people to turn off

unnecessary electricity appliances in peak hours. Some tasks can be re-arranged to

non-peak hours; this helps people to save cost and enjoy the lower price in non-peak

hours. Naturally, in order to use power more efficiently, the information needs to be

delivered in time to support real-time monitoring. To enable such mechanisms, the delay

performances of messaging deliveries must satisfy their timing requirements, such as 3ms

for relay protections and 16ms for data monitoring in substations [5]. Thus, the

communication performance is of critical importance in Smart Grid.

Nowadays, power transmission systems suffer from the fact that intelligence is only

applied locally by protection systems and by central control through the supervisory

control and data acquisition (SCADA) [6] system, such as distributed network protocol 3.0

(DNP3) [7] and Modbus [8]. The SCADA protocols were originally designed over serial

3

links, so these protocols are not appropriate to be directly applied to the Internet, which has

a comparably higher data transmission speed. In scenarios where security may not be a

critical issue, it is possible to allow consumers and suppliers communicating with each

other through the Internet. According to the above assumption, this thesis designs a

Microgrid [9] for demonstration as shown in Figure 2. User agents can use mobile devices

to control end devices. End devices send back information to user agents or suppliers for

further analysis.

Figure 2 Microgrid

Despite of the prosperity of Smart Grid, there lacks a general management mechanism.

Architectures of Smart Grid are often structurally complex and consist of several

4

hierarchies, which consist of a variety of physical communication media used for different

functions [10], supported by different protocols as shown in Figure 3. Therefore, most

managing interfaces in Smart Grid are proprietary.

As Smart Grid becomes an important infrastructure, obviously an efficient and general

solution for management is needed. In this thesis, we explore Simple Network

Management Protocol (SNMP) [11] and Session Initiation Protocol (SIP) [12] as general

management mechanisms in Smart Grid. SNMP is an Internet-standard protocol proposed

in 1990 for managing devices on IP networks. Compared with SNMP, SIP is a newbie in

network management. However, SIP is foreseen as a clear choice for Smart Grid

communication [13] in recent years.

Figure 3 Common protocol stacks in Smart Grid

As more devices are connected to the Internet, the Internet Protocol (IP) address space is

facing the crisis of depletion. To mitigate the problem of IP address shortage, Network

Address Translation (NAT) [14] was proposed. As many NAT devices deployed to retard

the exhaustion of IP addresses, there are a lot of enterprise/home networks applying NAT

5

to access the Internet. Unfortunately, because SNMP has no registration mechanism, NAT

becomes an obstacle for SNMP in remote management [15]. As shown in Figure 4, SNMP

requests will be blocked by the NAT. When users have devices deployed behind a NAT, it

will become unreachable for remote management. On the contrary, SIP provides a

registration mechanism. As shown in Figure 5, an end device registers to a SIP proxy

server when it is activated. The NAT maps the private IP address and port number

(10.21.11.33:5060) of the REGISTER message to a public IP address and port number

(163.22.21.83:3456) when it passes through the NAT. Then, for any SIP agent that wants

to send a request to this end device, the request is sent to the SIP proxy server and

forwarded to 163.22.21.83:3456, which will be translated to 10.21.11.33:5060 by the

NAT and routed to the end device successfully. Therefore, with this registration

mechanism, a manager can send messages to end devices via the SIP proxy server easily.

Figure 4 NAT traversal in SNMP

6

Figure 5 NAT traversal in SIP

Even though SNMP has a long history in traditional network management, Smart

Grid management is a new application for both SIP and SNMP. Evaluating advantages and

disadvantages of these two management mechanisms in Smart Grid would help to develop

better Smart Grid management systems. The remaining of this thesis is organized as

follows. Chapter 2 briefly introduced SNMP and SIP protocols. Chapter 3 describes the

system architecture and the components in our system. Chapter 4 illustrates the

implementation details and performance evaluation. Conclusive remarks and some future

works are given in Chapter 5.

7

Chapter 2. Related Works

2.1 SNMP in Home Automation

Smart Grid allows administrators to turn on/off home appliances remotely, which is

part of the scenario in “Home Automation”. In [16], SNMP was used as a management

mechanism in home automation. In that paper, the authors deployed several SNMP agents

in a house. Then, they set up a SNMP manager, which communicates to SNMP agents by

wireless network as shown in Figure 6. Users can control smart devices with SNMP

requests and monitor the information that was collected by SNMP agents. The size of an

SNMP request is roughly between 100 and 548 bytes. With small packet size, SNMP is an

efficient choice for home automation. However, as Figure 6shows, the SNMP manager and

smart devices must be in the same Local Area Network (LAN). SNMP messages will be

blocked by NAT if the SNMP manager tries to send SNMP messages remotely.

8

Figure 6 SNMP in Home automation

2.2 SIP in Home Automation

There are some papers talking about using SIP as management mechanisms, such as

[17]. In that thesis, it combined SIP and ZigBee [18] in home automation, as shown in

Figure 7. The SIP services were only implemented on a ZigBee/Ethernet gateway but not

on end devices. When user agents send SIP messages to a ZigBee/Ethernet gateway, the

ZigBee/Ethernet gateway translates SIP messages into ZigBee messages and sends them to

end devices. In that thesis, they need not worry about the NAT traversal problem because

SIP provides registration mechanism.

9

Figure 7 SIP in Home automation

In this approach, they extended SIP headers to describe more details of end devices.

However, they did not define their own headers precisely in the thesis. As the result, it is

difficult to distinguish each filed of the SIP header. Furthermore, their user interface was

written in C# programming language, which is an additional component to be installed.

2.3 XMPP in Home Automation

There are some protocols that have also been proposed in home automation, such as

Extensible Messaging and Presence Protocol (XMPP). In [19] XMPP and Open Service

Gateway Initiative (OSGi) technology is used to define a solution of service delivery for

10

home automation between remote service providers and local devices. In that paper, they

proposed OSGi for the detection function, while XMPP was applied to build a mechanism

of message notification. The flow of fault detection of that paper includes four parts: (1) the

state capturing component, (2) the knowledge base which stores each kind of refrigerator

state, (3) the inference engine which infers error causes, (4) the user interface shows users

the inferring results. The flow of fault detection of digital refrigerator was shown in Figure

8. However, because of the decentralized management, any two XMPP servers can

communicate with each other. Therefore, an XMPP user may receive messages from

unauthorized users.

Figure 8 The flow of fault detection of digital refrigerator

11

For the three different protocols (SNMP, SIP, XMPP), we used these three protocols

as key words and combine them with two additional keywords (“Smart Grid” and “home

automation”) to search on the IEEE Xplorer database. The results are shown in Figure 9.

As we can see, SIP becomes a popular issue in Smart Grid management.

Figure 9 Number of IEEE papers

http://ieeexplore.ieee.org/

12

Chapter 3. System Architecture

In this chapter, we shall introduce our system architecture as shown in Figure 10.

Figure 10 System Architecture

3.1 .Components

Our system consists of three components: (1) user agents, (2) SIP proxy server, and (3)

end devices. SNMP has no registration mechanism, so unlike SIP, we need not specifically

allocate a machine as a SNMP server. User agents in Figure 10 are designated as managers

in our system. User agents send control messages to end devices and end devices send back

information (such as system uptime or system descriptions) to user agents. In our scenario,

13

user agents can be desktops, laptops, smart phones, or any device with Internet connection.

User agents can easily control end devices remotely. And user agents do not need to install

special software to control end devices. In our system architecture, we use CSIPSimple [20]

as a SIP softphone running on the Android 2.3.7 operating system, to send SIP messages

to end devices. For SNMP, we use SNMP Management Service [21] to send SNMP

messages to control end devices. Furthermore, these software tools can be easily found

and, the best thing is, they are free!

A SIP proxy server is indispensable in our system architecture. User agents send SIP

messages via the SIP proxy server. Furthermore, SIP provides registration mechanism,

every node registers to SIP proxy server in our scenario. It helps us to achieve centralized

management. The SIP proxy server not only helps us to manage user agents and end

devices but also helps us to solve the NAT traversal problem. We install OpenSER as our

SIP proxy server running on the FreeBSD 8.2 operating system. OpenSER is a SIP proxy

server, call router and user agent registration server used in VoIP and instant messaging

applications. Now, the OpenSER has been renamed to OpenSIPS [22].

We use DMA-2440Ls as end devices in our system. We shall introduce them with

more details in chapter four.

3.2 Protocols

. Open System Interconnection (OSI) reference model was defined by International

Standard Organization (ISO). In order to interconnect different networks, OSI model

defines several layers of protocols, as shown in Figure 11. OSI model is a precise concept,

14

but it is difficult to write a program sometimes. Therefore, Defense Advanced Research

Project Agency (DARPA) proposed the TCP/IP model. TCP/IP model has a similar idea to

OSI model, but it simplified OSI seven-layer model to four layers.

Figure 11 Protocol models

Our research focuses on Internet-layer and application-layer. TCP/IP model provides

simple idea to describe the Internet. Therefore, we use TCP/IP as the reference model in

our reasearch. In the Internet-layer, we provide Internet Protocol version 4 (IPv4) and

Internet Protocol version 6 (IPv6) to access the Internet. Even IPv6 has been brought up

over a decade, IPv4 is still popular all over the world. Therefore, our system provide dual

stack protocols in every component. More details of IPv4 and IPv6 will be given in the

following subsections. In the application layer, we utilize SNMP and SIP protocols.

Evaluating the differences of these two protocols is the main goal in this thesis.

15

3.2.1 Internet Protocol version 4

The Internet is a global system of interconnected computer networks that use the

standard Internet protocol suite to serve billions of users all over the world. The

components of a basic Internet network are shown in Figure 12. Every device connecting to

the Internet must possess an IP address. The Internet consists of a great deal of these

devices such as personal computers (PC), laptops and printers.

Figure 12 A basic network which is part of the Internet

In order to connect each node of Internet, many Internet-layer protocols were

proposed. Nowadays, the most popular Internet-layer protocol is IPv4 [23]. The header of

16

IPv4 is shown in Figure 13. Each field in the IP packet contains different information to

instruct the network how to handle the packet. For instance, the Time to Live (TTL) field

indicates the lifetime of a packet, where the range of TTL is between 0 to 255. The value of

TTL decreases when a packet passes through a router. When TTL reaches 0, then the

packet must be dropped. The Protocol field identifies the higher-layer protocol carried in

the packet. Some possible values are listed in Table 1 .

Figure 13 IPv4 header

Table 1 Protocol values of IPv4 header [24]

Value

(Hexadecimal)

Value

(Decimal)

Protocol

00 0 Reserved

01 1 ICMP

02 2 IGMP

03 3 GGP

04 4 IP-in-IP Encapsulation

06 6 TCP

08 8 EGP

11 17 UDP

17

IPv4 addresses are fixed length of four octets (32 bits). An address begins with a

network number, followed by a local address. As the length of IPv4 address is 32 bits, this

limits the address space to 232, that is, less than 4.3 billion. In February 2011, it is formally

announced that IPv4 address has been exhausted [25] because of the rapid growth of the

Internet. Therefore, a new version of Internet Protocol was proposed.

3.2.2 Internet Protocol version 6

IPv6 [26] is the next generation standard of Internet Protocol. Since IPv4 address

exhausted in February 2011, people are to use IPv6. IPv6 specifies a new header format,

which is intentionally designed to ease the packet header processing by routers. The IPv6

header format is shown in Figure 14.Because the headers of IPv4 packets and IPv6 packets

are significantly different, these two Internet Protocols are not interoperable. However

IPv6 is a conservative extension of IPv4, most transport-layer or application-layer

protocols need little or even no change to operate over IPv6. The main advantage of IPv6

over IPv4 is its larger address space. The length of IPv6 address is 128 bits, which means

that theoretically IPv6 can have 2128 addresses. Compared to IPv4, IPv6 provides

abundant IP addresses.

18

Figure 14 IPv6 header

According to Figure 14, the header size has a fixed length of 40 octets. The Options

header field in IPv4 is now implemented as additional extension headers after the IPv6

header, which limits the size only by the size of an entire packet. The extension header

mechanism makes IPv6 protocol extensible, and allow future services like security and

quality of service (QoS) to be easily introduced. Furthermore, IPv6 has simplified its

header format. Although an IPv6 address is four times more than an IPv4 address, the

header size of IPv6 is only twice of an IPv4 header.

 IPv6 addresses are written in eight groups of four hexadecimal digits; these eight

groups are separated by colons, such as 2620:0:1cfe:face:b00c::3. The first four groups of

IPv6 address denote the network prefix, while the rest groups denote the host identifier.

The host identifier is self-generated according to the Media Access Control (MAC)

address of the network interface card (NIC), which is called the Extended Unique

Identifier (EUI)-64 as shown in Figure 15.

19

Figure 15 EUI-64 generation

IPv6 supports auto-configuration addressing, with either stateful and stateless

approaches. The IPv6 stateful address auto-configuration is assigned by Dynamic Host

Configuration Protocol version 6 (DHCPv6) [27]; the StateLess Address Auto

Configuration (SLAAC) is specified in RFC 4862 [28], in which a network device

acquires a 64-bit prefix from its local router and combines that with its own 64-bit host

identifier (EUI-64 as mentioned above). After acquiring an IPv6 address, the network

device needs to perform Duplicate Address Detection (DAD) [29] to make sure its IPv6

address is unique in Internet.

3.2.3 Simple Network Management Protocol

 SNMP is an application-layer protocol that offers network management services in

IP networks. Devices that typically support SNMP include routers, switches, workstations,

20

servers, printers, etc. SNMP provides a consistent mechanism to manage these devices.

SNMP is based on a client/server model in which the client issues requests to the server

and the server processes requests and responds to the client. In SNMP terminologies, an

“agent” denotes a client, and a manager denotes a server. The essence of SNMP is that

information can be collected by simple operating procedures. The SNMP protocol

consists of some basic commands such as:

1. Read: The manager retrieves the values of objects from the agent.

2. Write: The manager sets the values of objects at the agent.

3. Trap: Agent notifies the manager about the significant events.

To enable SNMP services, there must be a manager, an agent, the protocol and the

Management Information Base (MIB). A manager is an application of network

management to collect and analyze the information which is sent by agent. An agent is a

process of an end device which is used for receiving commands and sending information

to manager. The protocol refers to SNMP which uses User Datagram Protocol (UDP) to

delivery segments between a manager and an agent. SNMP provides five message

formats to exchange information between a manager and an agent as shown in Figure 16.

MIB is a set of managing information. In general, the architecture of SNMP is quite

simple. However, different network devices provide different functions. Therefore, we

need different MIB modules to provide different functions of different devices.

21

Figure 16 SNMP messages exchanging

With SNMP, a network administrator can control an agent from a manager. However,

the administrator needs to know what information is supported of the agent, then, he can

analyze it. Therefore, managing information of end device needs to translate into object

in which is called Managed Object (MO). MIBs consist of a lot of MO. Except for

standard MIBs, there are many manufacturers provide additional MIBs to have an

advantage.

Internet Engineering Task Force (IETF) not only defined the standard of SNMP, but

also defined common MOs of network devices for unified information. The definitions of

MOs were written in RFC1213 [30]. An object assigns an unambiguous identification is

required. This is achieved by registration. The registration tree is managed in a

completely decentralized way and it is impossible to be exhaustive. The registration tree

shows as Figure 17. The registration is defined and managed following ITU-T X.660 &

670 Recommendation series.

22

Figure 17 The registration tree [31]

3.2.4 Session Initiation Protocol

SIP is a plain text signaling protocol in application-layer that is used to establish,

modify and terminate multimedia sessions such as Internet telephony calls. SIP uses a

Uniform Resource Identifier (URI) as an addressing format. For example, a SIP URI

sip:Memphis@example.com is easy to memorize because it looks like an email address.

SIP defines two types of messages: request and response. Some SIP request messages are

shown in Table 2 , while some SIP response messages are shown in Table 3 .

23

Table 2 SIP request messages

Request

Methods

Description Defined in

INVITE Establishes a

session

RFC 3261

ACK Confirms an

INVITE request

RFC 3261

BYE Ends a session RFC 3261

CANCEL Cancels

establishing of a

session

RFC 3261

OPTIONS Queries the

capabilities of SIP

phones

RFC 3261

REGISTER Communicates user

location (host name

or IP address)

RFC 3261

PRACK Provisional

acknowledgement

RFC 3262

NOTIFY Notify the

subscriber of a new

event

RFC 3265

SUBSCRIBE Subscribes for an

event of

notification

RFC 3265

UPDATE Modifies the state

of a session without

changing the state

of the dialog

RFC 3311

MESSAGE

Transports instant

RFC 3428

24

messages using SIP

PUBLISH Publishes an event

to the server

RFC 3903

INFO Sends mid-session

information that

does not modify the

session state

RFC 6086

Table 3 SIP response messages

Status code Description

1xx Informational responses

2XX Success responses

3XX Redirection responses

4XX Request failures

5XX Server errors

6XX Global failures

3.3 Services

In our system architecture, we provide two different protocols of services. The first

one is using SNMP in our Microgrid as shown in Figure 18. We use mobile devices as

SNMP managers, which send SNMP requests to query the system uptime of end devices.

End devices send back responses to user agents. Therefore, user agents can control end

devices and collect information of end devices remotely.

25

Figure 18 SNMP in Microgrid

The other service in our system architecture is using SIP in Microgrid as shown in

Figure 19. User agents first register to SIP proxy server, so do end devices. Then, user

agents are able to send SIP messages to end devices via the SIP proxy server. Afterwards,

end devices send back response to user agents via the SIP proxy server. Therefore, user

agents can control end devices and collect information of end devices remotely. One

significant difference between SNMP and SIP is that SIP does not require every end

device to possess a public IP addresses for remote management.

26

Figure 19 SIP in Microgrid

Figure 20 shows an example of SIP request message in Smart Grid management.

The management data was encoded in XML format. XML tags are used to categorize

information of smart devices. For example, tag <type> denotes the query types of

messages. The query types including six different types:

0: loginIBC, to login an in-building controller (IBC).

1: queryPower, to query power usage information of a smart device.

2: warntoChange, to warn the administrator that the status of this smart device has

changed.

3: retrPower, to retransmit information of power usage.

4: ack, to acknowledge the instruction sent from the administrator.

5: socketStatus, to represent status of power socket.

Tag <devices> denotes the information of how many smart devices will be sent.

Tag <sid> denotes the identities of smart devices. The most attractive information may

be the one contained in tag <data>, which shows the voltage, current, electric power

and dielectric phase angle of smart devices. These SIP request messages, together with

the information contained in the XML tages, allows an administrator to manage smart

devices with SIP flexibly.

27

Figure 20 Example of Smart Grid management in SIP

Chapter 4. Implementation and

Performance Evaluation

In this thesis, we use a DMA-2440L embedded Linux development platform as our

end device. However, the default configuration of DMA-2440L does not IPv6, SNMP

and SIP. Therefore, the first step of our implementation is to include modules of these

protocols. In our scenario, we have two different protocols to provide services. Therefore,

we have two different protocol stacks. The protocol stacks of SNMP and SIP are shown

in Figure 21 and Figure 22. All the tools in this thesis which can be found in the

following hyper link: http://ms11.voip.edu.tw/~memphis/Download. Also, you can find

them from Internet.

http://ms11.voip.edu.tw/~memphis/Download

28

Figure 21 Protocol stack of SNMP management mechanism

Figure 22 Protocol stack of SIP management mechanism

4.1 Implementation

 4.1.1. Kernel Porting

29

DMA-2440L uses S3C2440 processor of ARM9 series which is made by Samsung.

DMA-2440L provides a stable clock rate at 400MHz. Furthermore, with the 64MB

memory supports, DMA-2440L provides a good performance and a low cost for users

who develop applications on embedded systems. DMA-2440L provides various drivers to

support different interfaces in Linux, so it is convenient to develop an experimental

system with this platform. However, to enable the full services in Figure 21 of

DMA-2440L, lots of re-configuration work must be done. DMA-2440L is equipped

with Linux kernel 2.6.24. To enable IPv6, we need to re-compile the kernel. Linux kernel

porting includes kernel configuring, kernel compiling and kernel loading. To configure a

kernel, we type the command: #make menuconfig in a terminal. This displays a menu

of kernel configuration as shown in Figure 23. Because DMA-2440L limits its kernel size

to be less than 2MB, unnecessary features must be removed, such as multicasting,

tunneling, RARP, etc. After kernel configuration is finished, we type the following

command: #make zImage to compile the kernel with the cross-compiler

arm-linux-gcc-4.0.3. This will generate two files, including Image and zImage.

An Image file is an uncompressed kernel. A zImage is a compressed image file, which

provides smaller size of kernel. Because zImage has smaller size than Image, so it is

appropriate to embedded systems. DMA-2440L can use Trivial File Transfer Protocol

(TFTP) to download the zImage and write it to DMA-2440. So far, the kernel porting is

finished.

30

Figure 23 Kernel configuring

4.1.2 File System

 After the kernel is ready, the platform still needs a file system which consists of

structures necessary for storing and managing data. These structures typically include an

operating system boot record, directories, and files. The main functions of a file system

include tracking allocated and free space, maintaining directories and file names, tracking

where each file is physically stored on the disk. There are some common file systems

used for embedded Linux, such as RoomFS, Second Extended File System (EXT2),

RAMDISK, Compressed ROM File System (CRAMFS), etc. CRAMFS is a compressed

file system which does not need to decompress all the contents of image into memory. It

allows us to utilize maximum number of memory. Therefore, we choose CRAMFS as the

file system of our platform.

 In this thesis, we use BusyBox 1.11.1 [32] to create a CRAMFS file system.

BusyBox is a development kit which combines tiny versions of many common UNIX

utilities into a single small executable. BusyBox provides a fairly complete POSIX

31

environment for any small or embedded system. File system configuring is similar to

kernel configuring. Typing the command: #make menuconfig to configure the settings

of file system. As Figure 24 shows, we select the options to include the utilities such as

which and gzip that are necessary in our experiment. Then, type #make to run the

cross-compiler. This will generate /etc, /usr, profile, fstab, etc. These files are located at

the _install/ directory. After creating a file system, typing #mkdir to create another

directory whose name is rootfs/. Copy all the contents from _install/ directory to rootfs/

directory.

Net-SNMP [33] and Sofia-SIP [34] are chosen as the protocol stacks to support

SNMP and SIP, so we need to download the source code of these libraries use a

cross-compiler to generate the libraries for the ARM processor in DMA-2440L. Copy the

above libraries to rootfs/ and type #./mkcramfs, then, the file system is created. And its

file name is root_dma.cramfs. Use TFTP to download the file system and burn it into

DMA-2440L. After rebooting the DMA-2440L, our system porting is ready and

functioning as shown in Figure 25.

Figure 24 BusyBox configuring

32

Figure 25 Embedded system start up

4.2 Performance Evaluation

4.2.1 Performance Analysis

 Smart Grid is a new application for both SNMP and SIP, so evaluating their

advantages and disadvantages on Smart Grid is certainly needed. In our scenario, both

SNMP and SIP can do the same tasks. As an example, we chose responding MAC address

as the event to evaluate the performances of SNMP and SIP with Wireshark [35]. In order

to get a fair result of experiments, the experimental conditions of SNMP and SIP are the

same. The end devices are DMA-2440L, using Ethernet to transmit frames. We assume

that there is no packet loss in this small network. According to Figure 18, one request and

one response are required to complete an event in SNMP. Meanwhile, according to

Figure 19, four requests and four responses are required to complete an event in SIP.

Suppose 𝑇𝑟𝑒𝑞. denotes the latency of a request, 𝑇𝑟𝑒𝑠. denotes the latency of a response,

33

𝑇𝑃𝑆𝑁𝑀𝑃. denotes the processing time of SNMP, and 𝑇𝑃𝑆𝐼𝑃. denotes the processing time

of SIP. The execution time of SNMP and SIP are shown in Table 4 . The transmission

time for SNMP and SIP are approximately the same, so we assume that in this table,

𝑇𝑟𝑒𝑞. = 𝑇𝑟𝑒𝑠. for both SNMP and SIP. What we would like to further investigate is the

difference of the protocol stack processing time.

Table 4 Execution time analysis for each protocol

Limited Time SNMP SIP

Execution Time 𝑇𝑟𝑒𝑞. + 𝑇𝑟𝑒𝑠. + 𝑇𝑃𝑆𝑁𝑀𝑃. 4𝑇𝑟𝑒𝑞. + 4𝑇𝑟𝑒𝑠. + 𝑇𝑃𝑆𝐼𝑃.

4.2.2 Experiment Analysis

 Wireshark is a free and open-source packet analyzer. We use Wireshark to help us

analyzing the information of each packet. We evaluate the performances of SNMP and

SIP under the following two constraints, respectively:

1. Limited Time: Evaluate how many messages of SNMP/SIP can be sent in a

limited time.

2. Total Message: Measure how long it takes for SNMP/SIP messages to be

delivered.

According to the information captured by Wireshark, an SNMP message size is

between 46 to 97 bytes. An SIP message size is between 706 to 758 bytes. The results of

experiments are shown in Table 5 and Table 6 .

Table 5 Experiment result of limited time

Limited Time SNMP SIP

5 Seconds 67.3 Messages 232.3 Messages

34

15 Seconds 193.7 Messages 704.7 Messages

25 Seconds 319 Messages 1171 Messages

Average 12.9 Messages/Second 46.8 Messages/Second

Table 6 Experimental result of Total messages

Total Messages SNMP SIP

10 Messages 0.66 Seconds 0.33 Seconds

50 Messages 3.71 Seconds 1.17 Seconds

100 Messages 7.77 Seconds 2.22 Seconds

Average 0.08 Seconds/ Message 0.023 Seconds/Messages

We can find that the performance of SIP is almost four times more than SNMP. As

Table 4 shows, we can say that the library of SIP that we chose is more efficient than the

one for SNMP, so the total execution time gets shorter. According to the experiments, we

can draw the following figures as shown in Figure 26 and Figure 27.

35

Figure 26 Messages sent in Limited time

Figure 27 Transmission time required for messages

As the figures indicate, the time is proportional to the number of messages.

Furthermore, SIP gets better performance than SNMP. However, as shown in Table 7 , the

disadvantage of SIP is that it requires more memory space, which is a scarce resource on

an embedded system.

36

Table 7 Footprints of SNMP and SIP

Footprint SNMP SIP

Standby 3,045 KB 6,699 KB

Running 3,045 KB 10,962 KB

According to the results from the above experiments, we can summarize the

advantages and disadvantages of SNMP and SIP. We observed the experiments and we

have the following preliminary conclusions: the small packet size of SNMP is its main

advantage. However, longer processing time, hard understanding OID and NAT traversal

problem are disadvantages of SNMP. SIP provides the following advantages: shorter

processing time, plain text content and no NAT traversal problem. Furthermore, the

American Standard Code for Information Interchange (ASCII) format of SIP packets

makes SIP has more scalability. The most critical issue of SIP is its large packet size.

Large packet size makes SIP have much overhead, decreasing the efficiency of network.

37

Chapter 5. Conclusion and Future

Work

Without a general management mechanism, the development of Smart Grid will be

slow down, even if the demand is strong. In this thesis, we provided two feasible

management mechanisms in Smart Grid. To verify their performance, we established a

Microgrid to provide experimental studies of SNMP and SIP. According to statistics in

Chapter 4, we found that SIP has a better performance than SNMP. However, SIP

consumes more memory resources. The small packet size and lower resources cost make

SNMP to be appropriate to embedded systems, if memory size is a strict limitation.

In this thesis, we provide a case study of SIP and SNMP. According to the

experiment results, we have following conclusions:

1. With lower resource cost and small packet size, SNMP is appropriate to

Microgrids. Without IPv6 supports, remote management is difficult.

2. SIP is a clear choice for Smart Grid communications.

However, SIP delivery messages in plain text. Therefore, encryption is certainly

needed. Furthermore, the default transport-layer protocol of SIP is the unreliable UDP,

which is one issue for SIP in Smart Grid communications. Heavy overhead is another

issue. In the future, reliable transport-layer protocol and header compression will be

important research topics of SIP if it has to be successfully adopted for Smart Grid

communications.

38

References

[1] S. Massoud Amin, Bruce F. Wollenberg, “Toward a Smart Grid – Power delivery for

the 21
st
 century”, IEEE Power & Energy Magazine, Vol. 3, No. 5, PP. 34-41,

September/October 2005.

[2] David Amstell, “Smart Grid leads German revolution”, October 2009,

[http://www.ngpowereu.com/news/smart-grid-revolution/]

[3] Office of the National Coordinator for Smart Grid Interoperability, “NIST framework

and roadmap for smart grid interoperability standards, release 1.0,” NIST Special

Publication 1108, pp. 1–145, Jan. 2010.

[4] Wei-Lun Wang, Quincy Wu, “Relay Placement Problem in Smart Grid Deployment”,

International Symposium on Leveraging Applications of Formal Methods (ISoLA

2010), Crete, Greece.

[5] Xiang Lu, Zhuo Lu, Wenye Wang, Jianfeng Ma, “On Network Performance

Evaluation toward the Smart Grid: A Case Study of DNP3 over TCP/IP”, Global

Communication Conference (GLOBECOM 2011), Houston, USA.

[6] Office of the Manager National Communications System, “Supervisory Control and

Data Acquisition (SCADA) Systems”, National Communications System, October

2004.

[7] K. Curtis, “DNP3 protocol primer,” in DNP User Group, 2005.

[8] A. West, “Securing DNP3 and Modbus with AGA12-2J,” in2008 IEEE Power and

Energy Society General Meeting (PES ’08), 2008.

[9] Microgrid, [http://galvinpower.org/microgrids]

http://www.ngpowereu.com/news/smart-grid-revolution/

39

[10] Tariq Samad, Brian Frank, “Leveraging the Web: A Universal Framework for

Building Automation”, American Control Conference (ACC 2007), New York City,

USA.

[11] J. Case, M. Fedor, M. Schoffstall, J. Davin, “Simple Network Management Protocol

(SNMP)”, RFC 1157, May 1990.

[12] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.

Handley, E. Schooler, “SIP: Session Initiation Protocol”, RFC 3261, June 2002.

[13] J. DiAdamo, SIP: The Clear Choice for Smart Grid Communications, July 2009,

[http://www.smartgridnews.com/artman/publish/commentary/SIP_The_Clear_Choic

e_for_Smart_Grid_Communications-604.html]

[14] K. Egevang, P. Francis, “The IP Network Address Translator”, May, 1994.

[15] Choongul Park, Kitae Jeong, Sungil Kim, Youngseok Lee, “NAT Issues In the

Remote Management of Home Network Devices”, IEEE Network Magazine, Vol.22,

Issue: 5, PP.48-55, September-October 2008.

[16] Demeter Robert, Sakany Istvan, “SNMP Protocol Based Home Automation System”,

Romanian educational and research network (RoEduNet) International Conference –

Networking and Research (RoEduNet 2011), Iasi, Romania.

[17] J. S. Li, “Design and Application of ZigBee/Ethernet Gateway in Remote Control

Systems”, Master Thesis, National Yunlin University of Science & Technology,

January, 2007.

[18] ZigBee Alliance, “ZigBee Specifications”, ZigBee Document 053474r17, November

2009.

[19] Mong-Fong Horng, Mao-Hsiung Hung, Yi-Ting Chen, Jeng-Shyang Pan, Wen Huang,

“A new approach based on XMPP and OSGi technology to home automation on Web”,

40

Computer Information Systems and Industrial Management Applications (CISIM

2010), Kraków, Poland

[20] CSIPSimple, [http://code.google.com/p/csipsimple/]

[21] Y, Matsumoto, SNMP Management Service,

[https://play.google.com/store/apps/details?id=jp.ymatsumoto.management&feature

=search_result#?t=W251bGwsMSwxLDEsImpwLnltYXRzdW1vdG8ubWFuYWdl

bWVudCJd]

[22] OpenSIPS, [http://www.opensips.org/]

[23] J. Postel, “Internet Protocol,” RFC 791, September 1981.

[24] J. Reynolds, J. Postel, ”Assigned Numbers”, RFC 1700, October 1994.

[25] APNIC (Asia-Pacific Network Information Center), ”IPv4 Exaustion details”,

[http://www.apnic.net/community/ipv4-exhaustion/ipv4-exhaustion-details]

[26] S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” RFC2460,

December 1998.

[27] R. Droms, Ed. J. Bound, B. Volz, T. Lemon, C. Perkins, M. Carney, “Dynamic Host

Configuration Protocol for IPv6 (DHCPv6) ,” RFC3315, July 2003.

[28] S. Thomson, T. Narten, T. Jinmei, “IPv6 Stateless Address Autoconfiguration”,

RFC4862, September 2007.

[29] N. Moore, “Optimistic Duplicate Address Detection (DAD) for IPv6,” RFC4429,

April 2006.

[30] K. McCloghrie, M. Rose, “Management Information Base for Network Management

of TCP/IP based internets: MIB-II”, RFC1213, March 1991.

[31] Wen-Long Yang, “A study of SNMP-based Detection of ARP Attacks”, Master Thesis,

National Chi Nan University, August 2007.

[32] BusyBox: The Swiss Army Knife of Embedded Linux, [http://www.busybox.net/]

http://www.apnic.net/community/ipv4-exhaustion/ipv4-exhaustion-details

41

[33] Net-SNMP, [http://net-snmp.sourceforge.net/]

[34] Sofia-SIP, [http://sofia-sip.sourceforge.net/]

[35] Wireshark, the world’s foremost network protocol analyzer.

[http://www.wireshark.org/]

42

Appendix: Procedures in Preparing the

Experimental Environment

A.1 Kernel configuration SOP of DMA-2440

1. Get the kernel source of LINUX 2.6.24 from

http://ms11.voip.edu.tw/~memphis/DMA2440L_SOP/dma-linux-2.6.24_rel_1.0_2440L_

090603.tar.bz2, then type the following commands

#tar -zxvf linux-2.6.24.tar.gz

#cd dma-linux-2.6.24

2. Modify Makefile

#vi Makefile

Modify the following lines

ARCH ?=arm

CROSS_COMPILE ?=/usr/local/arm/4.0.3/bin/arm-linux-

3. Get the cross compiler 4.0.3 from

http://ms11.voip.edu.tw/~memphis/Download/cross_4.0.3.tar.bz2 and unzip it beneath

/usr/local/arm

Please note that to cross-compile the kernel, version 4.0.3 is used for compiling kernel,

while version 3.4.1 is used for file system. Version 3.4.1 can be downloaded from the

URL specified in the next section.

4. Before using the cross-compiler, we need to export the path of cross-compiler. Type the

following command:

#export PATH=/usr/local/arm/4.0.3/bin/:$PATH

5.Before compiling the kernel, make sure that your machine(CentOS) has already installed

ncurses-devel, if not, type following command to install it

#yum install ncurses-devel

6.Type the command

#make menuconfig

7.Choose the module that you need, such as the following:

[*] Enable loadable module support --->

http://ms11.voip.edu.tw/~memphis/Download/cross_4.0.3.tar.bz2

43

[*] Module unloading

[*] Automatic kernel module loading

System Type ---->

[*] S3C2410 DMA support

[*] Support ARM920T processor

S3C2410 Machines --->

[*] SMDK2410/A9M2410

S3C2440 Machines --->

[*] SMDK2440

[*] SMDK2440 with S3C2440 CPU module

File systems-

[*]Network File Systems----

<*>NFS file system support

[*]Provide NFSv3 client support

[*]Provide client support for the NFSv3 ACL protocol extension

[*] Root file system on NFS

Networking --->

[*] Networking support

Networking options --->

[*] TCP/IP networking

[*] IP: multicasting

[*] IP: kernel level autoconfiguration

[*] IP: DHCP support

[*] IP: BOOTP support

<*> IP: IPsec transport mode

<*> IP: IPsec tunnel mode

<*> IP: IPsec BEET mode

<*> INET: socket monitoring interface

The IPv6 protocol --->

[*] IPv6: Privacy Extensions support

[*] IPv6: Router Preference (RFC 4191) support

8.After selecting the module you need, you can make an image of kernel

#make zImage

After this step, you can find two files zImage and Image. This implies that the kernel file

is ready. The file zImage is the compressed kernel file that we need.

44

A.2 File system configuration SOP of DMA-2440

1.Install ncurses-devel, if this has not been done.

#yum install ncurses-devel

2.Download busybox-1.11 from

http://www.busybox.net/downloads/busybox-1.11.1.tar.bz2 and Cross Compiler 4.0.3

from http://ms11.voip.edu.tw/~memphis/Download/cross-4.0.3.tar.bz2, then install on

your LINUX machine

3.Unzip BusyBox and Cross Compiler

#tar -jxvf busybox-1.11.1.tar.bz2

#cd busybox-1.11.1

4.#vi Makefile

Modify the following lines:

CROSS_COMPILE ?=/usr/local/arm/4.0.3/bin/arm-linux-

ARCH ?=arm

#cp cross-4.0.3.tar.bz2 /usr/local/arm

#tar -jxvf /usr/local/arm/cross-4.0.3.tar.bz2

#export PATH=/usr/local/arm/4.0.3/bin/

5.Configure the file system

#make menuconfig

6. Choose the module that you need, such as follows:

General configuration--->

Build options--->

[*] Build Busybox as a static binary (no shared libs)

[] Force NOMMU build

[*] Build with large file support (for accessing files > 2GB)

(/usr/local/arm/3.4.1/bin/arm-linux-) cross-compiler prefix

Debugging options--->

[*] Don’t use /usr

Applets links(as soft-links) --->

(./_install) Busybox installation prefix

Installation options--->

Busybox library tuning--->

[] Support version 2.2.x to 2.4.x Linux kernels

Miscellaneous utilities--->

http://www.busybox.net/downloads/busybox-1.11.1.tar.bz2
http://www.busybox.net/downloads/busybox-1.11.1.tar.bz2
Cross%20Compiler%204.0.3
http://ms11.voip.edu.tw/~memphis/Download/cross-4.0.3.tar.bz2

45

[] Inotifyd

[]taskset

Save the settings and exit the configuration.

7. Because there are some compatibility issues of different versions of cross-compilers, to

prevent the compilation from being failed, we must add a statement “#define

ARPHRD_INFINIBAND 32” in the following files :

busybox-1.11.1/networking/interface.c

busybox-1.11.1/networking/libiproute/ll_types.c

8.make busybox

#make && make install

9.We can found busybox tools beneath /_install, then we will create a file system

10. Go to the parent directory of busybox and create file system

#cd ..

#mkdir rootfs

#cd rootfs/

#mkdir bin dev etc lib proc sbin sys usr mnt tmp var

#cp –rfd ../busybox-1.11.1/_install/* .

#cp –rf ../busybox-1.11.1/examples/bootfloopy/etc/* ./etc

Edit following file:

#vi etc/profile

#etc/profile: system-wide .profile file for the Bourne shells

echo

echo –n “Processing /etc/profile…”

echo “Set Search library path”

LD_LIBRARY_PATH=/lib:/usr/lib

export LD_LIBRARY_PATH

#Set user path

echo “Set user path”

PATH=/bin:/sbin:/usr/bin:/usr/sbin

export PATH

#Set PS1

echo “Set PS1”

export PS1=”[$USER@dma2440L]\\$”

echo “Done”

46

echo

Save the file and exit. The following script is used for

designating environment variables.

11.Edit inittab file

#vi etc/inittab

#This is run first except when booting

::sysinit:/etc/init.d/rcS

#Start an “askfirst” shell on the console

#::askfirst:-/bin/bash

::askfirst:/bin/sh

#Stuff to do when restarting the init process

::restart:/sbin/init

::askfirst:/bin/sh

#::once:/sbin/raja.sh

#::respawn:/sbin/iom

::once:/usr/etc/rc.local

#Stuff to do before rebooting

::ctrlaltdel:/sbin/reboot

::shutdown:/bin/umount -a –r

Save and exit

12.Edit etc/fstab

#vi etc/fstab

none /proc proc defaults 0 0

none /tmp ramfs defaults 0 0

mdev /dev ramfs defaults 0 0

sysfs /sys sysfs defaults 0 0

13.Edit etc/init.d/rcS

#vi etc/init.d/rcS

#! /bin/sh

echo "Processing etc/ini.d/rc.S"

echo " Mount all"

/bin/mount -a

/bin/mknod /dev/console c 5 1

/bin/mknod /dev/null c 1 3

47

/bin/mknod /dev/ttySAC0 c 204 64

/bin/mknod /dev/ttySAC1 c 204 65

/bin/mknod /dev/ttySAC2 c 204 66

echo "Starting mdevd..."

/bin/echo /sbin/mdev > proc/sys/kernel/hotplug

mdev -s

#/sbin/udevd --daemon

#/sbin/udevadm trigger

ln -s /dev/ts0 /dev/ts

echo "****************"

echo "RootFS by Cramfs, DMA2440"

echo

Save and exit

14. Create mdev.conf beneath etc directory

#touch mdev.conf

15. Login as super user to create console and null nodes beneath dev

#cd ../dev/

#mknod –m 600 console c 5 1

#mknod –m 666 null c 1 3

17.The file system configuration is ready. Before make CRAMFS, make sure that your

machine has installed zlib-devel. If not, install it. Then type following command to create

CRAMFS file

#./mkcramfs rootfs/ root_dma.cramfs

48

A.3 Cross-compile Net-SNMP for the ARM architecture

1. Download the source file of Net-SNMP version 5.6.1.1 from

http://sourceforge.net/projects/net-snmp/files/latest/download?source=directory

2. Unzip it

#tar –xvf net-snmp-5.6.1.1.tar.gz

3. Create the Makefile of net-snmp-5.6.1.1

#cd net-snmp-5.6.1.1

./configure CC=/usr/local/arm/4.0.3/bin/arm-linux-gcc

--prefix=/home/memphis/snmp --build=i386-linux

--host=arm-linux --enable-mini-agent --with-endianness=little

--disable-manuals --disable-ucd-snmp-compatibility

--enable-as-needed --disable-embedded-perl

--without-perl-modules --disable-snmptrapd-subagent

--disable-applications --disable-scripts

--enable-ipv6 --with-mib-modules="mibII/ipv6"

--with-tranports="UDPIPv6 TCPIPv6"

make

make install

4. Copy the libraries of net-snmp to the embedded file system

#cp /usr/local/lib/libnetsmp* rootfs/lib/

5. Net-SNMP porting is completed.

49

A.4 Cross-compile Sofia-SIP for the ARM architecture

1. Download the source file of Sofia-SIP-1.12.11 from

http://sourceforge.net/projects/sofia-sip/files/sofia-sip/1.12.11/sofia-sip-1.12.11.

tar.gz/download

2. Unzip it

#tar –xvf sofia-sip-1.12.11.tar.gz

3.Create the Makefile of sofia-sip

#./configure --host=arm-linux

CC=/usr/local/arm/4.0.3/bin/arm-linux-gcc

4. Copy the libraries of sofia-sip to the embedded file system

#cp /usr/local/lib/libsofia-sip-ua* rootfs/lib/

5. Sofia-SIP porting is completed.

