B BREEEASRENTIESE A

B

FERNESEEEEZEMRIEE SIPISNMP 33HE BT

5t

On Network Performance Evaluation toward the Smart

Grid: A Case Study of SIP and SNMP

EEEIR - REEEL
WS - S
FERE—O—FtH=+=H

B BREEEASRENTIESE A

B

FERNESEEEEZEMRIEE SIPISNMP 33HE BT

5t

On Network Performance Evaluation toward the Smart

Grid: A Case Study of SIP and SNMP

EEEIR - REEEL
WS - S
FERE—O—FtH=+=H

ArEhARARELIRXERELE

HM LA . 2% (HRFR)
R A Btk BT 4% 2 3

ERRE S EREEE 2 ENkE SIP/SNMP 35 8E BT
ra=s

Ju

On Network Performance Evaluation toward the Smart
Grid: A Case Study of SIP and SNMP

BAZEGFE HEHRITEMGRE -

PaAREE €

R
e
N
i
i

6

Eﬁﬁﬁﬂi§§W%*§?l3WEK$W®’iﬂ%%ﬁiﬁ&ﬁﬁt4{
B PHeh- R EF o d X Z BB A B RiE- BT > D6 F R

HEHKTAEmy Pondvdos 7 1 AT4ce* Lo id o WA B OEF o

LEENA R Y B TS 9 4 BB T Y 2 20 w2

FAE o APl Y MEEEY EI0 SR 4 By HEY RE. 2

EX

CBZEBIASIRE ENEE RN A R PR R H REFRHA DR R R
EMEHENEL RS Gk RERAET] NAET U AR

- AR AT UAZIRERUE ABBEEOTR o RAHL PR T

REAGIHGOER LS FERH TP RA N FHAF 7 o]
BRUSAZRHBADREA AP A HEA- B REDIEEE L BAER

FE2 B 2 S ASEE o BN G2 BB

-

B FIHPE A L R 2
e

RSy SR e A T A 0 A Ros e BHIR P o

s AT - EF Y S S A E B 2 il ER R SIPISNMP 2 3sE & I 52

A N VA TR RN IR e LS N HE - 49
FENRH - PERE—o—FtH Sl - b
Bget - SR fREZIT © SRR

EES

PEERE RUMFENVRRE H B2 2SR BT FIATE H TG R EH - 2R
TR S B BB T - Al = s HAVEERER] » R E R b sy & 2 E
e (iR L AHAEER - Session Initiation Protocol (SIP) #8125 Fy— {02 (5 FHAE 4IRS
EEEEAIE RS EAEARE T - FI SIP IR R EBHIRHE: - (R EEEE
Y —Em A H o S5—(EHEZ (AT EEE By A £ Simple Network
Management Protocol (SNMP) » 13¢5 F 752 5 BE A 2 177 8 = ARamSURF i E 57
HIRHE AT ZRER » WL B IEREE - ¥4k Fy SIP 6Ot - [ERTSE0IR
FSZERIICR © R IR 2 Fk - B A ERiE

clll*‘+

BE#EEA © SIP 5 SNMP ; EEEAY

Title of Thesis: On Network Performance Evaluation toward the Smart Grid: A Case Study
of SIP and SNMP

Name of Institute: Department of Computer Science and Information Engineering, College

of Science and Technology, National Chi Nan University Pages: 49
Graduation Time: July 2012 Degree Conferred: Master
Student Name: Hui-Hsiung Chung Advisor Name: Dr. Quincy Wu

Abstract

As the energy consumption issue is getting critical, in many countries Smart Grid has
become widely adopted in daily life. However, one major obstacle of the development of
Smart Grid is that, the products from different vendors cannot communicate with each
other easily, due to the absence of a general managing mechanism. Session Initiation
Protocol (SIP) has been widely used in Voice over Internet Protocol (VolIP). However, it
was also adopted as a protocol to control network appliances. In this thesis, we utilize SIP
as a common mechanism to support Smart Grid management. Meanwhile, another
candidate is the Simple Network Management Protocol, which is also a popular protocol
in managing IP devices. In this work, both protocols were implemented on a real
embedded platform, and the performance is further evaluated and compared. The
experimental results showed that the SIP protocol stack occupies more memory space,
but its response time is shorter. In choosing which management protocol to adopt,
device manufacturers can make the technical choices according to whether they need to

save the memory space or the response time.

Key words: SIP; SNMP; Smart Grid

Contents

G TSSOSO P PSP I
OSSP RTP i
N 0] 1 - [o! S PSP OPRR PSRRI v
(O10] 0] (=] 0 | 7RO P TP PPRRTT V
LEST OF FIQUIES ...ttt ettt ettt VI
LISE OF TADIES ...t e e e et e e e e annee e VIilI
Chapter 1. INTrOQUCTIONooiiiiiiiiiiicie e 1
Chapter 2. Related WOTKSccoiiie e 7
2.1 SNMP in HOME AULOMALIONcciiieiiieeeiiee e ctee e e e e snee e 7

2.2 SIP iN HOME AULOMALIONcuiiieiiireciieeeeieeeeeiee e see e iee e te e a e e et e e eeeneeas 8

2.3 XMPP in HOME AULOMALIONccuiiieiiiie e eciie et e tee e sia e snaeeesnee e 9
Chapter 3. System ArChiteCtUIEcceiiiiiii s 12
3.1 LCOMIPONENES ...eeieiee ettt e et e e e e e e st r e e e e e e s e bbb raeeas 12

B2 PrOLOCOIS ...ttt 13
3.2.1 Internet ProtoCOl VEISION 4.........oouiiiiiiiiie i s 15

3.2.2 Internet ProtoCOl VEISION B.........oovieiiiiiiieiiieieeiee s 17

3.2.3 Simple Network Management Protocolcccccoveeviveeiine e 19

3.2.4 Session Initiation ProtoCol...........cccoveiiieiiiiiiiiiiesie e 22

313 SBIVICES ..ttt ittt ettt ettt nb e e 24
Chapter 4. Implementation and Performance Evaluation...............cccccccceevcveeiinnnnn. 27
4.1 TMPIEMENLALIONeeeiiiee e e e e 28
4.1.1. KerNI POITING ..occvveeiiiee ettt 28

4.1.2 FIlE SYSEIM...c.iiiiiiiiee it e e e e e ree e 30

4.2 Performance EValUALION...........ccuiiiiiiieiii e 32
4.2.1 Performance ANAIYSISocoiiieiiiie e 32

4.2.2 EXPEriment ANAIYSIS.......cccuiiiiiie ettt 33

Chapter 5. Conclusion and FUture WOrKcccoviiiiie e 37
RETEIEINCES ...ttt ettt bt e et e et e e anbee s 38
Appendix: Procedures in Preparing the Experimental Environment.......................... 42
A.1 Kernel configuration SOP 0f DMA-2440ccooveiiiiie e, 42

A.2 File system configuration SOP of DMA-2440.............cccoovviiiiiiiie e, 44

A.3 Cross-compile Net-SNMP for the ARM architecture..............ccocvveeiiinnneennnn, 48

A.4 Cross-compile Sofia-SIP for the ARM architectureccooovvveeiiiienccnnn, 49

\Y

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27

List of Figures

SMAIT Grid [2]..eeeieeiiie e 1
IVHCIOQIT. .. 3
Common protocol stacks in Smart Grid...........cc.cccevvvvieniieiiicieee 4
NAT traversal in SNIMP ..o 5
NAT traversal i SIPccoiviiie e 6
SNMP in Home automationcccveeiiereiire e siee e 8
SIP in HOMe automationcoouvieiiiie e 9
The flow of fault detection of digital refrigerator................cccocvennenn 10
Number of IEEE Paperscooiiiiiiiieeeee e 11
SYStEM AICHITECTUNE ... 12
ProtoCol MOdElSoooiviieiii e 14
A basic network which is part of the Internet.............ccccoceviieineen 15
IPVA NEAUET ...ttt 16
IPVB NEATET ...ttt 18
EUI-64 geNEration...........ccciuveeiiieeiiie e 19
SNMP messages eXChanging..........cccvveirveeeiiee i 21
The registration tree [31]......cccovveiieeeiiii e 22
SNMP iN MICIOGIIT ...eeeiiiieeiiie e 25
SIP N IMICIOGIIA ..ot 26
Example of Smart Grid management in SIPcccccovoveeiiieeennen. 27
Protocol stack of SNMP management mechanism...............cc......... 28
Protocol stack of SIP management mechanism..............ccccccccveenen. 28
Kernel configuring.........cocovveiiii i 30
BusyBOX CONfIQUIINGcoovreeiiie e 31
Embedded System Start UP.........ccecvveeeiiieeiiiee e 32
Messages sent in Limited timecccceevve i 35
Transmission time required for MesSagesccccovvvveevivveeviieeeiinnnnnn 35

VI

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7

List of Tables

Protocol values of IPv4 header [24]ccooviveiiiiiiinieseee e 16
SIP reqUESE MESSAGES. ... vvveiurrieiiie ettt 23
SIP reSPONSE MESSAGESeeiuvvieiiiieiire ettt 24
Execution time analysis for each protocol.............ccccovvviiiiiciienn. 33
Experiment result of limited time ... 33
Experimental result of Total MeSSagescccovvvvvvrieinivenieiiiesees 34
Footprints 0f SNMP and SIPcocooiiiiiiii 36

VI

Chapter 1. Introduction

It is believed that in the twenty-first century, there will be over seven billion people
on earth. Inevitably, people will face the problem of living with scarce resources. With the
finite resources, we need to utilize these resources efficiently. Energy, the resource
supporting the modern industry and our everyday lives, is a limited resource that human
being must carefully manage and utilize, to ensure the sustainability of our society. In 2005,
Smart Grid was brought up as an emerging cyber-physical system [1], whose idea is shown

in Figure 1.

Energy seamlessly drawn from <
a variety of sources
Smart Meters
These regord usage in real-time
for the purpose of billing and
monitoring and can also choose =~
periods of the day from which to =
draw power i.e. during off-peak

Microgeneration
Energy obtained on a small scale
can reduce demand on the grid

- to save money | i
e el ' l‘] . i >, o ‘
- = TR /l\ /I\ [
4]
= n | AN N
- -+ A & h 0ol
Larger Network (Offices etc) / N\ Isolated Microgrids &0
Can generate own power = If there is a disturbance in the 5

through solar panels, wind grifl the affected microgrids can be

B .) isolated from the central grid to
turbines and in turn can supply ensure minimal disruption to
energy back to the central services

network grid - 3
=
Power Storage
Energy that is generated during non-peak times can

be stored for potential future usage to ensure
minimal wastage

-

Figure 1 Smart Grid [2]

Smart Grid delivers electricity from suppliers to consumers. It incorporates power
infrastructures with two-way communication technologies [3]. Smart Grid combines with
power systems, telecommunications, smart energy devices and digital controllers [4]. As
shown in Figure 1, Smart Grid integrates different technologies into a universal system.
With Smart Grid, people will be able to control electric appliances remotely. Furthermore,
the information such as temperature, humidity and power consumption, can be collected by
smart devices and delivered to administrators by Smart Grid Networks. Therefore, even
when people are far away, they can keep aware of every detail of their houses. Smart Grid
not only helps people to live in a smarter style, but also helps people to get more efficiency
in electric power utilization. In many countries, there is a policy of Critical Peak Pricing
(CPP), which charges higher price for electricity in peak hours. With the assistance of
Smart Grid, it is possible to collect the information of power usage by smart devices,
figure out the tendency of power consumption in a house, and remind people to turn off
unnecessary electricity appliances in peak hours. Some tasks can be re-arranged to
non-peak hours; this helps people to save cost and enjoy the lower price in non-peak
hours. Naturally, in order to use power more efficiently, the information needs to be
delivered in time to support real-time monitoring. To enable such mechanisms, the delay
performances of messaging deliveries must satisfy their timing requirements, such as 3ms
for relay protections and 16ms for data monitoring in substations [5]. Thus, the

communication performance is of critical importance in Smart Grid.

Nowadays, power transmission systems suffer from the fact that intelligence is only
applied locally by protection systems and by central control through the supervisory
control and data acquisition (SCADA) [6] system, such as distributed network protocol 3.0

(DNP3) [7] and Modbus [8]. The SCADA protocols were originally designed over serial

links, so these protocols are not appropriate to be directly applied to the Internet, which has
a comparably higher data transmission speed. In scenarios where security may not be a
critical issue, it is possible to allow consumers and suppliers communicating with each
other through the Internet. According to the above assumption, this thesis designs a
Microgrid [9] for demonstration as shown in Figure 2. User agents can use mobile devices
to control end devices. End devices send back information to user agents or suppliers for

further analysis.

——

L Ty ~.
’ N
(q)

I’ () é \\

1 é () \

| |

\ é U ()
\

\ Surveillance /’
\\ .
~ ”
~ e =" .
End devices

User agent

IPv6 Network

5

-

User agent

Supplier

Figure 2 Microgrid

Despite of the prosperity of Smart Grid, there lacks a general management mechanism.

Architectures of Smart Grid are often structurally complex and consist of several

3

hierarchies, which consist of a variety of physical communication media used for different
functions [10], supported by different protocols as shown in Figure 3. Therefore, most

managing interfaces in Smart Grid are proprietary.

As Smart Grid becomes an important infrastructure, obviously an efficient and general
solution for management is needed. In this thesis, we explore Simple Network
Management Protocol (SNMP) [11] and Session Initiation Protocol (SIP) [12] as general
management mechanisms in Smart Grid. SNMP is an Internet-standard protocol proposed
in 1990 for managing devices on IP networks. Compared with SNMP, SIP is a newbie in
network management. However, SIP is foreseen as a clear choice for Smart Grid

communication [13] in recent years.

Application

Application Layer

Layer

IEEE
802.15.4

IEEE
802.15.4

ZigBee protocol stack 6LoWPAN protocol stack

Figure 3 Common protocol stacks in Smart Grid

As more devices are connected to the Internet, the Internet Protocol (IP) address space is
facing the crisis of depletion. To mitigate the problem of IP address shortage, Network
Address Translation (NAT) [14] was proposed. As many NAT devices deployed to retard

the exhaustion of IP addresses, there are a lot of enterprise/home networks applying NAT

to access the Internet. Unfortunately, because SNMP has no registration mechanism, NAT
becomes an obstacle for SNMP in remote management [15]. As shown in Figure 4, SNMP
requests will be blocked by the NAT. When users have devices deployed behind a NAT, it
will become unreachable for remote management. On the contrary, SIP provides a
registration mechanism. As shown in Figure 5, an end device registers to a SIP proxy
server when it is activated. The NAT maps the private IP address and port number
(10.21.11.33:5060) of the REGISTER message to a public IP address and port number
(163.22.21.83:3456) when it passes through the NAT. Then, for any SIP agent that wants
to send a request to this end device, the request is sent to the SIP proxy server and
forwarded to 163.22.21.83:3456, which will be translated to 10.21.11.33:5060 by the
NAT and routed to the end device successfully. Therefore, with this registration

mechanism, a manager can send messages to end devices via the SIP proxy server easily.

()

=

N 4
End-device SNMP requests
IP addr:10.21.11.33 SNMP agent
IP addr:223.139.155.247
NAT
[P addr:163.22.21.83

Figure 4 NAT traversal in SNMP

SIP Proxy Server

[P addr:163.22.21.180

register
From:10.21.11.33:5060
To:163.22.21.180:5060

register
From: 163.22.21.83:3456
To:163.22.21.180:5060

()

requests

From: 163.22.21.180:5060
To: 163.22.21.83:3456
requests

requests
From:163.22.21.180:5060

To0:10.21.11.33 .
register
End-device

IP addr:10.21.11.33
NAT
TP addr:163.22.21.83

SIP agent
From:223.139.155.247:5060
To0:163.22.21.180:5060

Figure 5 NAT traversal in SIP

Even though SNMP has a long history in traditional network management, Smart
Grid management is a new application for both SIP and SNMP. Evaluating advantages and
disadvantages of these two management mechanisms in Smart Grid would help to develop
better Smart Grid management systems. The remaining of this thesis is organized as
follows. Chapter 2 briefly introduced SNMP and SIP protocols. Chapter 3 describes the
system architecture and the components in our system. Chapter 4 illustrates the
implementation details and performance evaluation. Conclusive remarks and some future

works are given in Chapter 5.

Chapter 2. Related Works

2.1 SNMP in Home Automation

Smart Grid allows administrators to turn on/off home appliances remotely, which is
part of the scenario in “Home Automation”. In [16], SNMP was used as a management
mechanism in home automation. In that paper, the authors deployed several SNMP agents
in a house. Then, they set up a SNMP manager, which communicates to SNMP agents by
wireless network as shown in Figure 6. Users can control smart devices with SNMP
requests and monitor the information that was collected by SNMP agents. The size of an
SNMP request is roughly between 100 and 548 bytes. With small packet size, SNMP is an
efficient choice for home automation. However, as Figure 6shows, the SNMP manager and
smart devices must be in the same Local Area Network (LAN). SNMP messages will be

blocked by NAT if the SNMP manager tries to send SNMP messages remotely.

o=
>
o
W A
s
7
-~
-
___Wx
=]
=]
3
2
<
|
|
o
[——

[
|
|
|
[
[
|
[
L
|
|
[
[
|
[
[
|
[
[
Iy
I
I
Iy
I
I
Iy
Iy
Iy
I

|
|
|
|
|
|
/ WDS :
/ | Floor2 ——————‘T ——————————————————— .
I () -+ = Room2] ————— Pl
I |) [
p oy | 11
1 AL | | Pl
\ AV AP2 ,' | Il :
|
CO B , L_ ¥ o
\ AP | T ST == T T T T T T ST ST ST S e ————— |
\ SNMP | Floort === ===/ ==~~~ =~"~ """ """ """~ "I
\ Manager [Room11 -~ ————————=————— = |
AY 1| [’ 1 ,__F() smoke : : |
\\ 1| (()),,_-n-—--';" == _————1 detector P!
N [/ / | - 11 |
Ny 1| ?\\ | ~ | ujdoor P!
S~ [\ \ ~.! sNMP\Aaen lights 1!
——+4 4 N == 9 - P!
1o 4 N oS, door/window P!
Router with I AP S sensor 1!
Firewall ! | \ N (N
DHCP Server I | Roomi2 \ ____ _| - \NRoomﬂ, - _I' — — Room14 : |
Lol Qo 1 (92) TR S Pl
| | I | |
Py | h b
| | | ! | | |
Internet I : I: I: : : I
| | 1_SNMPAgent _;_SNMPAgent | SNMPAgent ;|
|

Figure 6 SNMP in Home automation

2.2 SIP In Home Automation

There are some papers talking about using SIP as management mechanisms, such as
[17]. In that thesis, it combined SIP and ZigBee [18] in home automation, as shown in
Figure 7. The SIP services were only implemented on a ZigBee/Ethernet gateway but not
on end devices. When user agents send SIP messages to a ZigBee/Ethernet gateway, the
ZigBee/Ethernet gateway translates SIP messages into ZigBee messages and sends them to
end devices. In that thesis, they need not worry about the NAT traversal problem because

SIP provides registration mechanism.

Inter‘l::—;-tf/—f‘J

I l

(Ethdrnet ()

l [

4 \
| Router |
\ £ /

Router %

Zig /B met c
Gateway
Roouter -

Figure 7 SIP in Home automation

In this approach, they extended SIP headers to describe more details of end devices.
However, they did not define their own headers precisely in the thesis. As the result, it is
difficult to distinguish each filed of the SIP header. Furthermore, their user interface was

written in C# programming language, which is an additional component to be installed.

2.3 XMPP in Home Automation

There are some protocols that have also been proposed in home automation, such as
Extensible Messaging and Presence Protocol (XMPP). In [19] XMPP and Open Service

Gateway Initiative (OSGi) technology is used to define a solution of service delivery for

home automation between remote service providers and local devices. In that paper, they
proposed OSGi for the detection function, while XMPP was applied to build a mechanism
of message notification. The flow of fault detection of that paper includes four parts: (1) the
state capturing component, (2) the knowledge base which stores each kind of refrigerator
state, (3) the inference engine which infers error causes, (4) the user interface shows users
the inferring results. The flow of fault detection of digital refrigerator was shown in Figure
8. However, because of the decentralized management, any two XMPP servers can

communicate with each other. Therefore, an XMPP user may receive messages from

6d

Maintainer User

unauthorized users.

State Knowledge User
Capturing » Base Interface
Component (MySQL)
A A
State Values !
Of Digital Step 1. To read the state valugs.
Refrigerator Step 2. To iNfer error causes.

Step3. To send the Message of
[nferred results.

Inference Engine

Figure 8 The flow of fault detection of digital refrigerator

10

For the three different protocols (SNMP, SIP, XMPP), we used these three protocols
as key words and combine them with two additional keywords (“Smart Grid” and “home
automation”) to search on the IEEE Xplorer database. The results are shown in Figure 9.

As we can see, SIP becomes a popular issue in Smart Grid management.

Number of IEEE Papers

M SIP
m SNMP
= XMPP

Figure 9 Number of IEEE papers

11

http://ieeexplore.ieee.org/

Chapter 3. System Architecture

In this chapter, we shall introduce our system architecture as shown in Figure 10.

User Agent

1Pv4/6 SIP/SNMP
Network

SIP Proxy Server

iEnd-Devices

@ § @

DMA-2440L, DMA-2440L DMA-2440L

Figure 10 System Architecture

3.1.Components

Our system consists of three components: (1) user agents, (2) SIP proxy server, and (3)
end devices. SNMP has no registration mechanism, so unlike SIP, we need not specifically
allocate a machine as a SNMP server. User agents in Figure 10 are designated as managers
in our system. User agents send control messages to end devices and end devices send back

information (such as system uptime or system descriptions) to user agents. In our scenario,

12

user agents can be desktops, laptops, smart phones, or any device with Internet connection.
User agents can easily control end devices remotely. And user agents do not need to install
special software to control end devices. In our system architecture, we use CSIPSimple [20]
as a SIP softphone running on the Android 2.3.7 operating system, to send SIP messages
to end devices. For SNMP, we use SNMP Management Service [21] to send SNMP
messages to control end devices. Furthermore, these software tools can be easily found

and, the best thing is, they are free!

A SIP proxy server is indispensable in our system architecture. User agents send SIP
messages via the SIP proxy server. Furthermore, SIP provides registration mechanism,
every node registers to SIP proxy server in our scenario. It helps us to achieve centralized
management. The SIP proxy server not only helps us to manage user agents and end
devices but also helps us to solve the NAT traversal problem. We install OpenSER as our
SIP proxy server running on the FreeBSD 8.2 operating system. OpenSER is a SIP proxy
server, call router and user agent registration server used in VoIP and instant messaging

applications. Now, the OpenSER has been renamed to OpenSIPS [22].

We use DMA-2440Ls as end devices in our system. We shall introduce them with

more details in chapter four.

3.2 Protocols

. Open System Interconnection (OSI) reference model was defined by International
Standard Organization (ISO). In order to interconnect different networks, OSI model

defines several layers of protocols, as shown in Figure 11. OSI model is a precise concept,

13

but it is difficult to write a program sometimes. Therefore, Defense Advanced Research
Project Agency (DARPA) proposed the TCP/IP model. TCP/IP model has a similar idea to

OSI model, but it simplified OSI seven-layer model to four layers.

OSI Model TCP/IP Model

Application Layer

Presentation Layer Application Layer

Session Layer

Transport Layer Transport Layer

Network Layer Internet Layer

Data Link Layer
Network Interface

Layer

Physical Layer

Figure 11 Protocol models

Our research focuses on Internet-layer and application-layer. TCP/IP model provides
simple idea to describe the Internet. Therefore, we use TCP/IP as the reference model in
our reasearch. In the Internet-layer, we provide Internet Protocol version 4 (IPv4) and
Internet Protocol version 6 (IPv6) to access the Internet. Even IPv6 has been brought up
over a decade, IPv4 is still popular all over the world. Therefore, our system provide dual
stack protocols in every component. More details of IPv4 and IPv6 will be given in the
following subsections. In the application layer, we utilize SNMP and SIP protocols.

Evaluating the differences of these two protocols is the main goal in this thesis.

14

3.2.1 Internet Protocol version 4

The Internet is a global system of interconnected computer networks that use the
standard Internet protocol suite to serve billions of users all over the world. The
components of a basic Internet network are shown in Figure 12. Every device connecting to
the Internet must possess an IP address. The Internet consists of a great deal of these

devices such as personal computers (PC), laptops and printers.

Switch/Hub

1

~
Router
[nternet

Laptop Router
Printer
:“ Server
=
Figure 12 A basic network which is part of the Internet

In order to connect each node of Internet, many Internet-layer protocols were

proposed. Nowadays, the most popular Internet-layer protocol is IPv4 [23]. The header of

15

IPv4 is shown in Figure 13. Each field in the IP packet contains different information to
instruct the network how to handle the packet. For instance, the Time to Live (TTL) field
indicates the lifetime of a packet, where the range of TTL is between 0 to 255. The value of
TTL decreases when a packet passes through a router. When TTL reaches 0, then the
packet must be dropped. The Protocol field identifies the higher-layer protocol carried in

the packet. Some possible values are listed in Table 1 .

0 1 2 3
0123 4567890123456 78999012345¢6789801
tot—t—t—t—t—t—t -ttt =ttt =ttt -ttt =ttt —t—F—t—t—+
|Version| IHL | Type of Service]| Tetal Length |
B S e L e e e o s s S e S s A S S e st st St (S

| Identification |Flags | Fragment Offset
t—t—F—F—t—F—t—t—t—t—F—F—F—t—F—F—t—F—t—t—F—F—F—F—F—F—F—F—t—F—F—+—+
| Time to Live | Proteoccol | Header Checksum

b=t —t—d—t—t—t—t—t—t—t—t—t—t—t—t—F -ttt -t —f—f b —f—d—p—f ==t 4
| Source Address I
t—t—F—F—t—F—t—F—t—t—F—F—F—t—F—F—t—F—t—F—F—F—F—F—F—F—F—F—t—F—F—+—+
| Destination Address [
s e e e e e B e e e e T o e e
I Options | Padding I
ottt bttt -ttt bt —F bt bt —F—F—F bt b —F b —F—t—F—F—+—+

Figure 13 IPv4 header
Table 1 Protocol values of IPv4 header [24]

Value Value Protocol
(Hexadecimal) (Decimal)
00 0 Reserved
01 1 ICMP
02 2 IGMP
03 3 GGP
04 4 IP-in-1P Encapsulation
06 6 TCP
08 8 EGP
11 17 UDP

16

IPv4 addresses are fixed length of four octets (32 bits). An address begins with a
network number, followed by a local address. As the length of IPv4 address is 32 bits, this
limits the address space to 232, that is, less than 4.3 billion. In February 2011, it is formally
announced that IPv4 address has been exhausted [25] because of the rapid growth of the

Internet. Therefore, a new version of Internet Protocol was proposed.

3.2.2 Internet Protocol version 6

IPv6 [26] is the next generation standard of Internet Protocol. Since IPv4 address
exhausted in February 2011, people are to use IPv6. IPv6 specifies a new header format,
which is intentionally designed to ease the packet header processing by routers. The IPv6
header format is shown in Figure 14.Because the headers of IPv4 packets and IPv6 packets
are significantly different, these two Internet Protocols are not interoperable. However
IPv6 is a conservative extension of IPv4, most transport-layer or application-layer
protocols need little or even no change to operate over IPv6. The main advantage of IPv6
over IPv4 is its larger address space. The length of IPv6 address is 128 bits, which means
that theoretically IPv6 can have 228 addresses. Compared to IPv4, IPv6 provides

abundant IP addresses.

17

t-d-t-t-d-d-t-t-t-d-d-t-d-F-t-F-t-t-F-t-t-F-t-d-F-t-F-F-d-t-+-+-+

|version| Traffic Class | Flow Label
e s T e s 2 e B e e et S L b TR
| Payload Length | Next Header | Hop Limit

+-+-+-+-F+-+-+-+-F+-F-+-+-F+-F-F+-F-F-F-F-F-F+—-F-F-F-F-F+-F+-F-F-F-F-+-+
Source Address
+-+-+-+-+-+-+-+-F-+-F+-+-F-F-F+-+-F-F-F-F-F-F-F+-F-F—F-F—F-+-F-+-

Destination Address

|
I |
+ +
I |
+ +
I |
+ +
I |
+- +
I |
+ +
I |
+ +
I |
+ +
I |
+- +

e S st T o

Figure 14 IPv6 header

According to Figure 14, the header size has a fixed length of 40 octets. The Options
header field in IPv4 is now implemented as additional extension headers after the IPv6
header, which limits the size only by the size of an entire packet. The extension header
mechanism makes IPv6 protocol extensible, and allow future services like security and
quality of service (QoS) to be easily introduced. Furthermore, IPv6 has simplified its
header format. Although an IPv6 address is four times more than an IPv4 address, the
header size of IPv6 is only twice of an IPv4 header.

IPv6 addresses are written in eight groups of four hexadecimal digits; these eight
groups are separated by colons, such as 2620:0:1cfe:face:b00c::3. The first four groups of
IPv6 address denote the network prefix, while the rest groups denote the host identifier.
The host identifier is self-generated according to the Media Access Control (MAC)
address of the network interface card (NIC), which is called the Extended Unique

Identifier (EUI)-64 as shown in Figure 15.

18

IEEE Administered Manufacturer Selected

Company ID Extension ID
24 bits 24 bits
IEEE 802 Address: ccecec00 ceococcece cecooccce SOOOOOOMK HXOOOOO YO KKK

EUI-64 Address: ccceec00 cececeee ccccccce |11111111J11111110] 0000000 XOOO0OMKK XXXKXNKX

OxFF OxFE

IPv6 Interface
Identifier:

cceeecl0 ceececcee coeeccece T1111117 11111770 30000000 XXOOMXXX XXX

64 bits

Figure 15 EUI-64 generation

IPv6 supports auto-configuration addressing, with either stateful and stateless
approaches. The IPv6 stateful address auto-configuration is assigned by Dynamic Host
Configuration Protocol version 6 (DHCPv6) [27]; the StateLess Address Auto
Configuration (SLAAC) is specified in RFC 4862 [28], in which a network device
acquires a 64-bit prefix from its local router and combines that with its own 64-bit host
identifier (EUI-64 as mentioned above). After acquiring an IPv6 address, the network
device needs to perform Duplicate Address Detection (DAD) [29] to make sure its IPv6

address is unique in Internet.

3.2.3 Simple Network Management Protocol

SNMP is an application-layer protocol that offers network management services in

IP networks. Devices that typically support SNMP include routers, switches, workstations,

19

servers, printers, etc. SNMP provides a consistent mechanism to manage these devices.
SNMP is based on a client/server model in which the client issues requests to the server
and the server processes requests and responds to the client. In SNMP terminologies, an
“agent” denotes a client, and a manager denotes a server. The essence of SNMP is that
information can be collected by simple operating procedures. The SNMP protocol
consists of some basic commands such as:

1. Read: The manager retrieves the values of objects from the agent.

2. Write: The manager sets the values of objects at the agent.

3. Trap: Agent notifies the manager about the significant events.

To enable SNMP services, there must be a manager, an agent, the protocol and the
Management Information Base (MIB). A manager is an application of network
management to collect and analyze the information which is sent by agent. An agent is a
process of an end device which is used for receiving commands and sending information
to manager. The protocol refers to SNMP which uses User Datagram Protocol (UDP) to
delivery segments between a manager and an agent. SNMP provides five message
formats to exchange information between a manager and an agent as shown in Figure 16.
MIB is a set of managing information. In general, the architecture of SNMP is quite
simple. However, different network devices provide different functions. Therefore, we

need different MIB modules to provide different functions of different devices.

20

SNMP Manager SNMP Agent

Get-request

> UDP port 161
Get-response

Get-next-request

>»] UDP port 161
Get-response

Set-request

> UDP port 161
Get-response

Trap
UDP port 162 [€

Figure 16 SNMP messages exchanging

With SNMP, a network administrator can control an agent from a manager. However,
the administrator needs to know what information is supported of the agent, then, he can
analyze it. Therefore, managing information of end device needs to translate into object
in which is called Managed Object (MO). MIBs consist of a lot of MO. Except for
standard MIBs, there are many manufacturers provide additional MIBs to have an
advantage.

Internet Engineering Task Force (IETF) not only defined the standard of SNMP, but
also defined common MOs of network devices for unified information. The definitions of
MOs were written in RFC1213 [30]. An object assigns an unambiguous identification is
required. This is achieved by registration. The registration tree is managed in a
completely decentralized way and it is impossible to be exhaustive. The registration tree
shows as Figure 17. The registration is defined and managed following ITU-T X.660 &

670 Recommendation series.

21

ceitt

(o)

1T

Root-Node

iso

()]

.

joint

)

org
3)

dod

(6)

internet

a1y

3.2.4 Session Initiation Protocol

SIP is a plain text signaling protocol in application-layer that is used to establish,
modify and terminate multimedia sessions such as Internet telephony calls. SIP uses a
Uniform Resource Identifier (URI) as an addressing format. For example, a SIP URI
sip:Memphis@example.com is easy to memorize because it looks like an email address.

SIP defines two types of messages: request and response. Some SIP request messages are

shown in Table 2 , while some SIP response messages are shown in Table 3 .

22

directory mgmit experimental private
(1 (2) (&) “@
mib-2
(1)
system | | interfaces at ip icmp tep udp egp transmission snmp
a1))) &) (6) ()] (8) a0y an
Figure 17 The registration tree [31]

Table 2

SIP request messages

Request Description Defined in

Methods

INVITE Establishes a | RFC 3261
session

ACK Confirms an | RFC 3261
INVITE request

BYE Ends a session RFC 3261

CANCEL Cancels RFC 3261
establishing of a
session

OPTIONS Queries the | RFC 3261
capabilities of SIP
phones

REGISTER Communicates user | RFC 3261
location (host name
or IP address)

PRACK Provisional RFC 3262
acknowledgement

NOTIFY Notify the | RFC 3265
subscriber of a new
event

SUBSCRIBE | Subscribes for an | RFC 3265
event of
notification

UPDATE Modifies the state | RFC 3311
of a session without
changing the state
of the dialog

MESSAGE RFC 3428

Transports instant

23

messages using SIP

PUBLISH Publishes an event | RFC 3903

to the server

INFO Sends mid-session | RFC 6086
information that
does not modify the

session state

Table 3 SIP response messages

Status code Description

1xx Informational responses
2XX Success responses

3xx Redirection responses
4xX Request failures

5xx Server errors

BXX Global failures

3.3 Services

In our system architecture, we provide two different protocols of services. The first
one is using SNMP in our Microgrid as shown in Figure 18. We use mobile devices as
SNMP managers, which send SNMP requests to query the system uptime of end devices.
End devices send back responses to user agents. Therefore, user agents can control end

devices and collect information of end devices remotely.

24

User Agent

N> ﬁ End-devices

SNMP Get Request

&

Get Response

N

Set Request

v

Set Response

Figure 18 SNMP in Microgrid

The other service in our system architecture is using SIP in Microgrid as shown in
Figure 19. User agents first register to SIP proxy server, so do end devices. Then, user
agents are able to send SIP messages to end devices via the SIP proxy server. Afterwards,
end devices send back response to user agents via the SIP proxy server. Therefore, user
agents can control end devices and collect information of end devices remotely. One
significant difference between SNMP and SIP is that SIP does not require every end

device to possess a public IP addresses for remote management.

25

I

User Agent

U il

SIP Proxy Server End devices
Register
SIP Register
_ 200 OK 500 OK A
Request MESSAGE Request MESSAGE R
200 OK 200 OK

A

Request MESSAGE (text) Request MESSAGE (text)

200 OK 2 200 OK
N Request MESSAGE Request MESSAGE
200 OK 200 OK R

| Request MESSAGE (text) Request MESSAGE (text]
200 OK 200 OK

~
.l

Figure 19 SIP in Microgrid

Figure 20 shows an example of SIP request message in Smart Grid management.
The management data was encoded in XML format. XML tags are used to categorize
information of smart devices. For example, tag <type> denotes the query types of
messages. The query types including six different types:

0: loginIBC, to login an in-building controller (IBC).

1: queryPower, to query power usage information of a smart device.

2: warntoChange, to warn the administrator that the status of this smart device has
changed.

3: retrPower, to retransmit information of power usage.

4: ack, to acknowledge the instruction sent from the administrator.

5: socketStatus, to represent status of power socket.

Tag <devices> denotes the information of how many smart devices will be sent.
Tag <sid> denotes the identities of smart devices. The most attractive information may
be the one contained in tag <data>, which shows the voltage, current, electric power
and dielectric phase angle of smart devices. These SIP request messages, together with
the information contained in the XML tages, allows an administrator to manage smart
devices with SIP flexibly.

26

<Tuml werzion="1.0" encoding="UTF-8"%>
<amniz
ztypexl</types
zrqlogin=
zuid=mac=/nid=
=timestamp=2011-11-29 12:07:40</t inestanp>
={rqlogins
zrpaockets
zdevicez=2</devicess
zgockets
zzid=001=/zid>
<data=109,50, 10, 360</datas|
<faockets
<gockets
=21d=002=/aid>
=datax110,30,15, 180</data>
zfaocket=
=/ rpaockets
zrphatterys
zdeviceslzfdevices
zhattervs
<hid=001=/bid>
<datax110,50, 100« datax
<fhbatterys
<{rphatterys
<famiz

Figure 20 Example of Smart Grid management in SIP

Chapter 4. Implementation and

Performance Evaluation

In this thesis, we use a DMA-2440L embedded Linux development platform as our
end device. However, the default configuration of DMA-2440L does not IPv6, SNMP
and SIP. Therefore, the first step of our implementation is to include modules of these
protocols. In our scenario, we have two different protocols to provide services. Therefore,
we have two different protocol stacks. The protocol stacks of SNMP and SIP are shown
in Figure 21 and Figure 22. All the tools in this thesis which can be found in the

following hyper link: http://ms11.voip.edu.tw/~memphis/Download. Also, you can find

them from Internet.

27

http://ms11.voip.edu.tw/~memphis/Download

DMA-2440L PC / Mobile Device

Linux Kernel 2.6.24 Linux Kernel 2.6.32
SNMP Agent SNMP Manager
UDP UDP
IPv6 IPv6
|[EEE 802.3 |IEEE 802.3
Ethernet Ethernet
Interface Interface

Figure 21 Protocol stack of SNMP management mechanism

DMA-2440L PC / Mobile Device
Linux Kernel 2.6.24 Linux Kernel 2.6.32
SIP Agent SIP Agent
UDP UDP
IPV6 IPV6
|[EEE 802.3 |[EEE 802.3
Ethernet Ethernet
Interface Interface

Figure 22 Protocol stack of SIP management mechanism

4.1 Implementation

4.1.1. Kernel Porting

28

DMA-2440L uses S3C2440 processor of ARM9 series which is made by Samsung.
DMA-2440L provides a stable clock rate at 400MHz. Furthermore, with the 64MB
memory supports, DMA-2440L provides a good performance and a low cost for users
who develop applications on embedded systems. DMA-2440L provides various drivers to
support different interfaces in Linux, so it is convenient to develop an experimental
system with this platform. However, to enable the full services in Figure 21 of
DMA-2440L, lots of re-configuration work must be done. DMA-2440L is equipped
with Linux kernel 2.6.24. To enable IPv6, we need to re-compile the kernel. Linux kernel
porting includes kernel configuring, kernel compiling and kernel loading. To configure a
kernel, we type the command: #make menuconfig inaterminal. This displays a menu
of kernel configuration as shown in Figure 23. Because DMA-2440L limits its kernel size
to be less than 2MB, unnecessary features must be removed, such as multicasting,
tunneling, RARP, etc. After kernel configuration is finished, we type the following
command: #make zImage to compile the kernel with the cross-compiler
arm-linux-gcc-4.0.3. This will generate two files, including Image and zlmage.
An Image file is an uncompressed kernel. A zImage is a compressed image file, which
provides smaller size of kernel. Because zlmage has smaller size than Image, so it is
appropriate to embedded systems. DMA-2440L can use Trivial File Transfer Protocol
(TFTP) to download the zImage and write it to DMA-2440. So far, the kernel porting is

finished.

29

i root@tarzan:/home/ryan/DMA-2440_Linux2.6.24 [120x37]
ERC) REE BRO \EW ¥R HAG®
.config - Linux Kernel v2.6.24 Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters are hotkeys. Pressing <Y> includes
<N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in
[1 excluded <M> module < > module capable

[*] Enable loadable module support
—-*- Enable the block layer --->
System Type --->
Bus support --->
Kernel Features --->
Boot options --->
Floating point emulation --->
Userspace binary formats --->
Power management options --->
Networking --->
Device Drivers --->
File systems --->
[1 Instrumentation Support --->
Kernel hacking --->
Security options --->
-*- cryptographic API --->
Library routines --->
Load an Alternate Configuration File
Save an Alternate Configuration File

< Exit > < Help >

Figure 23 Kernel configuring
4.1.2 File System

After the kernel is ready, the platform still needs a file system which consists of
structures necessary for storing and managing data. These structures typically include an
operating system boot record, directories, and files. The main functions of a file system
include tracking allocated and free space, maintaining directories and file names, tracking
where each file is physically stored on the disk. There are some common file systems
used for embedded Linux, such as RoomFS, Second Extended File System (EXT2),
RAMDISK, Compressed ROM File System (CRAMFS), etc. CRAMFS is a compressed
file system which does not need to decompress all the contents of image into memory. It
allows us to utilize maximum number of memory. Therefore, we choose CRAMFS as the
file system of our platform.

In this thesis, we use BusyBox 1.11.1 [32] to create a CRAMFS file system.
BusyBox is a development kit which combines tiny versions of many common UNIX

utilities into a single small executable. BusyBox provides a fairly complete POSIX

30

environment for any small or embedded system. File system configuring is similar to
kernel configuring. Typing the command: #make menuconfig to configure the settings
of file system. As Figure 24 shows, we select the options to include the utilities such as
which and gzip that are necessary in our experiment. Then, type #make to run the
cross-compiler. This will generate /etc, /usr, profile, fstab, etc. These files are located at
the _install/ directory. After creating a file system, typing #mkdir to create another
directory whose name is rootfs/. Copy all the contents from _install/ directory to rootfs/
directory.

Net-SNMP [33] and Sofia-SIP [34] are chosen as the protocol stacks to support
SNMP and SIP, so we need to download the source code of these libraries use a
cross-compiler to generate the libraries for the ARM processor in DMA-2440L. Copy the
above libraries to rootfs/ and type #./mkcramfs, then, the file system is created. And its
file name is root_dma.cramfs. Use TFTP to download the file system and burn it into

DMA-2440L. After rebooting the DMA-2440L, our system porting is ready and

functioning as shown in Figure 25.

£ root@tarzan:/home/ryan/busybox-1.11.1 [129x37]

ERC) REE BRO REW BEOQ HAO
BusyBox 1.11.1 Configuration

Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters are hotkeys. Pressing <Y> includes
<N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in
[1 excluded <M> module < > module capable

Busybox Settings ---

--- Applets

rchival Utilities --->

oreutils --->

onsole Utilities --->

ebian Utilities --->

ditors --->

inding Utilities --->

nit Utilities --->

ogin/Password Management Utilities --->

inux Ext2 FS Progs --->

inux Module Utilities --->

inux system Utilities --->
M scellaneous Utilities --->
N tworking Utilities --->

rocess Utilities --->

hells --——>

ystem Logging Utilities --->

unit Utilities --->

rint Utilities --->

oad an Alternate Configuration File
ave Configuration to an Alternate File

< Exit > < Help >

Figure 24 BusyBox configuring
31

UDA1341 audio driver initialized successful
TCP cubic registered
: Registered protocol family 1
: Registered protocol family 10
: Registered udp transport module.
: Registered tcp transport module.
SCTP: Hash tables configured (established 2048 bind 4096)
ieee80211: 802.11 data/management/control stack, git-1.1.13
ieee80211: Copyright (C) 2004-2005 Intel Corporation <jketreno@linux.intel.com>
rtc-test rtc-test.0: setting system clock to 1970-01-01 00:00:02 UTC (2)
VEFS: Mounted root (cramfs filesystem) readonly.
Freeing init memory: 212K
init started: BusyBox v1.11l.1 (2012-04-09 08:38B:25 CST)
starting pid 845, tty '': '/ete/init.d/reS’'
Processing ete/ini.d/re.S
Mount all
Starting mdevd. ..
khkkkhkkhkkhkhkhhkk

RootFS by Cramfs, DMA2440

starting pid 855, tty '': '/usr/ete/rc.local’
Cannot run '/usr/etc/rc.local': No such file or directory

Please press Enter to activate this console. I

Figure 25 Embedded system start up

4.2 Performance Evaluation

4.2.1 Performance Analysis

Smart Grid is a new application for both SNMP and SIP, so evaluating their
advantages and disadvantages on Smart Grid is certainly needed. In our scenario, both
SNMP and SIP can do the same tasks. As an example, we chose responding MAC address
as the event to evaluate the performances of SNMP and SIP with Wireshark [35]. In order
to get a fair result of experiments, the experimental conditions of SNMP and SIP are the
same. The end devices are DMA-2440L, using Ethernet to transmit frames. We assume
that there is no packet loss in this small network. According to Figure 18, one request and
one response are required to complete an event in SNMP. Meanwhile, according to
Figure 19, four requests and four responses are required to complete an event in SIP.

Suppose T,..q. denotes the latency of a request, T,.., denotes the latency of a response,

32

Tpsymp. denotes the processing time of SNMP, and Tpg;p. denotes the processing time
of SIP. The execution time of SNMP and SIP are shown in Table 4 . The transmission
time for SNMP and SIP are approximately the same, so we assume that in this table,
Treq. = Tres. for both SNMP and SIP. What we would like to further investigate is the

difference of the protocol stack processing time.

Table 4 Execution time analysis for each protocol

Execution Time Treq. + Tres. + TPSNMP. 4'Treq. + 4‘Tres. + TPSIP.

4.2.2 Experiment Analysis

Wireshark is a free and open-source packet analyzer. We use Wireshark to help us
analyzing the information of each packet. We evaluate the performances of SNMP and
SIP under the following two constraints, respectively:

1. Limited Time: Evaluate how many messages of SNMP/SIP can be sent in a

limited time.

2. Total Message: Measure how long it takes for SNMP/SIP messages to be

delivered.

According to the information captured by Wireshark, an SNMP message size is
between 46 to 97 bytes. An SIP message size is between 706 to 758 bytes. The results of
experiments are shown in Table 5 and Table 6 .

Table 5 Experiment result of limited time

5 Seconds 67.3 Messages 232.3 Messages

33

15 Seconds 193.7 Messages 704.7 Messages

25 Seconds 319 Messages 1171 Messages

Average 12.9 Messages/Second 46.8 Messages/Second

Table 6 Experimental result of Total messages

10 Messages 0.66 Seconds 0.33 Seconds
50 Messages 3.71 Seconds 1.17 Seconds
100 Messages 7.77 Seconds 2.22 Seconds
Average 0.08 Seconds/ Message 0.023 Seconds/Messages

We can find that the performance of SIP is almost four times more than SNMP. As
Table 4 shows, we can say that the library of SIP that we chose is more efficient than the
one for SNMP, so the total execution time gets shorter. According to the experiments, we

can draw the following figures as shown in Figure 26 and Figure 27.

34

1500

1000 /
—-SNMP
500

Message

-=-S|P

5 10 15 20 25
Time (Second)

Figure 26 Messages sent in Limited time

10

T 8

c

§ 6 //

(7))

v 4 -—-SNMP

£

= 2 -=-S|p
0

10 30 50 75 100
Number of messages

Figure 27 Transmission time required for messages

As the figures indicate, the time is proportional to the number of messages.
Furthermore, SIP gets better performance than SNMP. However, as shown in Table 7, the

disadvantage of SIP is that it requires more memory space, which is a scarce resource on

an embedded system.

35

Table 7 Footprints of SNMP and SIP

Standby 3,045 KB 6,699 KB

Running 3,045 KB 10,962 KB

According to the results from the above experiments, we can summarize the
advantages and disadvantages of SNMP and SIP. We observed the experiments and we
have the following preliminary conclusions: the small packet size of SNMP is its main
advantage. However, longer processing time, hard understanding OID and NAT traversal
problem are disadvantages of SNMP. SIP provides the following advantages: shorter
processing time, plain text content and no NAT traversal problem. Furthermore, the
American Standard Code for Information Interchange (ASCII) format of SIP packets
makes SIP has more scalability. The most critical issue of SIP is its large packet size.

Large packet size makes SIP have much overhead, decreasing the efficiency of network.

36

Chapter 5. Conclusion and Future

Work

Without a general management mechanism, the development of Smart Grid will be
slow down, even if the demand is strong. In this thesis, we provided two feasible
management mechanisms in Smart Grid. To verify their performance, we established a
Microgrid to provide experimental studies of SNMP and SIP. According to statistics in
Chapter 4, we found that SIP has a better performance than SNMP. However, SIP
consumes more memory resources. The small packet size and lower resources cost make
SNMP to be appropriate to embedded systems, if memory size is a strict limitation.

In this thesis, we provide a case study of SIP and SNMP. According to the
experiment results, we have following conclusions:

1. With lower resource cost and small packet size, SNMP is appropriate to

Microgrids. Without IPv6 supports, remote management is difficult.

2. SlIPisaclear choice for Smart Grid communications.

However, SIP delivery messages in plain text. Therefore, encryption is certainly
needed. Furthermore, the default transport-layer protocol of SIP is the unreliable UDP,
which is one issue for SIP in Smart Grid communications. Heavy overhead is another
issue. In the future, reliable transport-layer protocol and header compression will be
important research topics of SIP if it has to be successfully adopted for Smart Grid

communications.

37

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

S. Massoud Amin, Bruce F. Wollenberg, “Toward a Smart Grid — Power delivery for
the 21% century”, IEEE Power & Energy Magazine, Vol. 3, No. 5, PP. 34-41,
September/October 2005.

David Amstell, “Smart Grid leads German revolution”, October 20009,
[http://www.ngpowereu.com/news/smart-grid-revolution/]

Office of the National Coordinator for Smart Grid Interoperability, “NIST framework
and roadmap for smart grid interoperability standards, release 1.0,” NIST Special
Publication 1108, pp. 1-145, Jan. 2010.

Wei-Lun Wang, Quincy Wu, “Relay Placement Problem in Smart Grid Deployment”,
International Symposium on Leveraging Applications of Formal Methods (ISoLA
2010), Crete, Greece.

Xiang Lu, Zhuo Lu, Wenye Wang, Jianfeng Ma, “On Network Performance
Evaluation toward the Smart Grid: A Case Study of DNP3 over TCP/IP”, Global
Communication Conference (GLOBECOM 2011), Houston, USA.

Office of the Manager National Communications System, “Supervisory Control and
Data Acquisition (SCADA) Systems”, National Communications System, October
2004.

K. Curtis, “DNP3 protocol primer,” in DNP User Group, 2005.

A. West, “Securing DNP3 and Modbus with AGA12-2J,” in2008 IEEE Power and
Energy Society General Meeting (PES °08), 2008.

Microgrid, [http://galvinpower.org/microgrids]

38

http://www.ngpowereu.com/news/smart-grid-revolution/

[10] Tariq Samad, Brian Frank, “Leveraging the Web: A Universal Framework for
Building Automation”, American Control Conference (ACC 2007), New York City,
USA.

[11] J. Case, M. Fedor, M. Schoffstall, J. Davin, “Simple Network Management Protocol
(SNMP)”, RFC 1157, May 1990.

[12] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.
Handley, E. Schooler, “SIP: Session Initiation Protocol”, RFC 3261, June 2002.

[13] J. DiAdamo, SIP: The Clear Choice for Smart Grid Communications, July 20009,
[http://www.smartgridnews.com/artman/publish/commentary/SIP_The_Clear_Choic
e_for_Smart_Grid_Communications-604.html]

[14] K. Egevang, P. Francis, “The IP Network Address Translator”, May, 1994.

[15] Choongul Park, Kitae Jeong, Sungil Kim, Youngseok Lee, “NAT Issues In the
Remote Management of Home Network Devices”, IEEE Network Magazine, Vol.22,
Issue: 5, PP.48-55, September-October 2008.

[16] Demeter Robert, Sakany Istvan, “SNMP Protocol Based Home Automation System”,
Romanian educational and research network (RoEduNet) International Conference —
Networking and Research (RoEduNet 2011), lasi, Romania.

[17] J. S. Li, “Design and Application of ZigBee/Ethernet Gateway in Remote Control
Systems”, Master Thesis, National Yunlin University of Science & Technology,
January, 2007.

[18] ZigBee Alliance, “ZigBee Specifications”, ZigBee Document 053474r17, November
2009.

[19] Mong-Fong Horng, Mao-Hsiung Hung, Yi-Ting Chen, Jeng-Shyang Pan, Wen Huang,

“A new approach based on XMPP and OSGi technology to home automation on Web”,

39

Computer Information Systems and Industrial Management Applications (CISIM
2010), Krakéw, Poland

[20] CSIPSimple, [http://code.google.com/p/csipsimple/]

[21] Y, Matsumoto, SNMP Management Service,
[https://play.google.com/store/apps/details?id=jp.ymatsumoto.management&feature
=search_result#?t=W251bGwsMSwxLDEsImpwLnltYXRzdW1vdG8ubWFuYWadl
bWWVudCJd]

[22] OpenSIPS, [http://www.opensips.org/]

[23] J. Postel, “Internet Protocol,” RFC 791, September 1981.

[24] J. Reynolds, J. Postel, ”Assigned Numbers”, RFC 1700, October 1994.

[25] APNIC (Asia-Pacific Network Information Center), ”IPv4 Exaustion details”,

[http://www.apnic.net/community/ipv4-exhaustion/ipv4-exhaustion-details]

[26] S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” RFC2460,
December 1998.

[27] R. Droms, Ed. J. Bound, B. Volz, T. Lemon, C. Perkins, M. Carney, “Dynamic Host
Configuration Protocol for IPv6 (DHCPv6) ,” RFC3315, July 2003.

[28] S. Thomson, T. Narten, T. Jinmei, “IPv6 Stateless Address Autoconfiguration”,
RFC4862, September 2007.

[29] N. Moore, “Optimistic Duplicate Address Detection (DAD) for IPv6,” RFC4429,
April 2006.

[30] K. McCloghrie, M. Rose, “Management Information Base for Network Management
of TCP/IP based internets: MIB-11”, RFC1213, March 1991.

[31] Wen-Long Yang, “Astudy of SNMP-based Detection of ARP Attacks”, Master Thesis,
National Chi Nan University, August 2007.

[32] BusyBox: The Swiss Army Knife of Embedded Linux, [http://www.busybox.net/]

40

http://www.apnic.net/community/ipv4-exhaustion/ipv4-exhaustion-details

[33] Net-SNMP, [http://net-snmp.sourceforge.net/]
[34] Sofia-SIP, [http://sofia-sip.sourceforge.net/]
[35] Wireshark, the world’s foremost network protocol analyzer.

[http://www.wireshark.org/]

41

Appendix: Procedures in Preparing the

Experimental Environment

Al Kernel configuration SOP of DMA-2440

1. Get the kernel source of LINUX 2.6.24 from
http://ms11.voip.edu.tw/~memphis/DMA2440L_SOP/dma-linux-2.6.24 _rel 1.0 2440L _
090603.tar.bz2, then type the following commands

#tar -zxvf linux-2.6.24.tar.gz

#cd dma-linux-2.6.24

2. Modify Makefile

#vi Makefile

Modify the following lines

ARCH ?=arm

CROSS_COMPILE ?=/usr/local/arm/4.0.3/bin/arm-linux-

3. Get the cross compiler 4.0.3 from
http://ms11.voip.edu.tw/~memphis/Download/cross_4.0.3.tar.bz2 and unzip it beneath
{usr/local/arm

Please note that to cross-compile the kernel, version 4.0.3 is used for compiling kernel,
while version 3.4.1 is used for file system. \ersion 3.4.1 can be downloaded from the
URL specified in the next section.

4. Before using the cross-compiler, we need to export the path of cross-compiler. Type the
following command:

#export PATH=/usr/local/arm/4.0.3/bin/:SPATH

5.Before compiling the kernel, make sure that your machine(CentOS) has already installed
ncurses-devel, if not, type following command to install it

#yum install ncurses-devel

6.Type the command

#make menuconfig

7.Choose the module that you need, such as the following:

[*] Enable loadable module support —-->

42

http://ms11.voip.edu.tw/~memphis/Download/cross_4.0.3.tar.bz2

[*] Module unloading

[*] Automatic kernel module loading
System Type ---->

[*] S3C2410 DMA support

[*] Support ARMY920T processor

S3C2410 Machines --—>
[*] SMDK2410/A9M2410
S3C2440 Machines —--->

[*] SMDK2440

[*] SMDK2440 with S3C2440 CPU module
File systems-

[*]Network File Systems----

<*>NFS file system support
[*]Provide NFSv3 client support
[*]Provide client support for the NFSv3 ACL protocol extension
[*] Root file system on NFS
Networking --->

[*] Networking support

Networking options —--->

TCP/IP networking

*

*

[*]

[*] IP: multicasting

[*] IP: kernel level autoconfiguration
[*]

*] IP: DHCP support

[*] IP: BOOTP support

<*> TIP: IPsec transport mode

<*> IP: IPsec tunnel mode

<*> IP: IPsec BEET mode

<*> INET: socket monitoring interface

The IPv6 protocol --->

[*] IPv6: Privacy Extensions support

[*] IPv6: Router Preference (RFC 4191) support
8.After selecting the module you need, you can make an image of kernel
#make zImage

After this step, you can find two files zImage and Image. This implies that the kernel file
is ready. The file zImage is the compressed kernel file that we need.

43

A2 File system configuration SOP of DMA-2440

1.Install ncurses-devel, if this has not been done.

#yum install ncurses-devel

2.Download busybox-1.11 from
http://www.busybox.net/downloads/busybox-1.11.1.tar.bz2 and Cross Compiler 4.0.3
from http://ms1l.voip.edu.tw/~memphis/Download/cross-4.0.3.tar.bz2, then install on
your LINUX machine

3.Unzip BusyBox and Cross Compiler

#tar -jxvf busybox-1.11.1.tar.bz?2

#cd busybox-1.11.1

4#v1i Makefile

Modify the following lines:

CROSS COMPILE ?=/usr/local/arm/4.0.3/bin/arm-linux-

ARCH 7?=arm

#cp cross-4.0.3.tar.bz2 /usr/local/arm
#tar -jxvf /usr/local/arm/cross-4.0.3.tar.bz2
#export PATH=/usr/local/arm/4.0.3/bin/
5.Configure the file system
#make menuconfig
6. Choose the module that you need, such as follows:
General configuration--->
Build options--->
[*] Build Busybox as a static binary (no shared libs)
[] Force NOMMU build
[*] Build with large file support (for accessing files > 2GB)
(/usr/local/arm/3.4.1/bin/arm-1linux-) cross-compiler prefix
Debugging options--->
[*] Don’t use /usr
Applets links(as soft-links) --->
(./ _install) Busybox installation prefix
Installation options—-->
Busybox library tuning--->
[1] Support version 2.2.x to 2.4.x Linux kernels

Miscellaneous utilities—--->

44

http://www.busybox.net/downloads/busybox-1.11.1.tar.bz2
http://www.busybox.net/downloads/busybox-1.11.1.tar.bz2
Cross%20Compiler%204.0.3
http://ms11.voip.edu.tw/~memphis/Download/cross-4.0.3.tar.bz2

[] Inotifyd

[Jtaskset

Save the settings and exit the configuration.

7. Because there are some compatibility issues of different versions of cross-compilers, to
prevent the compilation from being failed, we must add a statement “#define
ARPHRD INFINIBAND 327 inthe following files :

busybox-1.11.1/networking/interface.c

busybox-1.11.1/networking/libiproute/Il_types.c

8.make busybox

#make && make install

9.We can found busybox tools beneath /_install, then we will create a file system

10. Go to the parent directory of busybox and create file system

#cd ..

#mkdir rootfs

#cd rootfs/

#mkdir bin dev etc 1lib proc sbin sys usr mnt tmp var

#cp -rfd ../busybox-1.11.1/ install/*

#cp —-rf ../busybox-1.11.1/examples/bootfloopy/etc/* ./etc
Edit following file:

#vi etc/profile

#etc/profile: system-wide .profile file for the Bourne shells
echo

echo -n “Processing /etc/profile..”

echo “Set Search library path”

LD LIBRARY PATH=/lib:/usr/lib

export LD LIBRARY PATH

#Set user path

echo “Set user path”
PATH=/bin:/sbin:/usr/bin:/usr/sbin
export PATH

#Set PS1
echo “Set PS1”
export PS1="[$USER@dma2440L]\\$”

echo “Done”

45

echo

Save the file and exit. The following script is used
designating environment variables.
11.Edit inittab file

#vi etc/inittab

#This is run first except when booting
::sysinit:/etc/init.d/rcS

#Start an “askfirst” shell on the console
#::askfirst:-/bin/bash

::askfirst:/bin/sh

#Stuff to do when restarting the init process
i:restart:/sbin/init

::askfirst:/bin/sh

#::once:/sbin/raja.sh
#::respawn:/sbin/iom
::once:/usr/etc/rc.local

#Stuff to do before rebooting
::ctrlaltdel:/sbin/reboot

: :shutdown: /bin/umount -a -r

Save and exit

12.Edit etc/fstab

#vi etc/fstab

none /proc proc defaults 0 0
none /tmp ramfs defaults 0 0
mdev /dev ramfs defaults 0 0
sysfs /sys sysfs defaults 0 0

13.Edit etc/init.d/rcS

#vi etc/init.d/rcS

#! /bin/sh

echo "Processing etc/ini.d/rc.S"

echo " Mount all"

/bin/mount -a

/bin/mknod /dev/console ¢ 5 1
/bin/mknod /dev/null ¢ 1 3

46

for

/bin/mknod /dev/ttySACO c 204 64
/bin/mknod /dev/ttySACl c 204 65
/bin/mknod /dev/ttySAC2 c 204 66

echo "Starting mdevd..."

/bin/echo /sbin/mdev > proc/sys/kernel/hotplug
mdev -s

#/sbin/udevd --daemon

#/sbin/udevadm trigger

In -s /dev/ts0 /dev/ts

eChO LIS g i b b b b i 2 S A i e i db L

echo "RootFS by Cramfs, DMA2440"

echo

Save and exit

14. Create mdev.conf beneath etc directory

#touch mdev.conf

15. Login as super user to create console and null nodes beneath dev

#cd ../dev/

#mknod -m 600 console ¢ 5 1

#mknod -m 666 null c 1 3

17.The file system configuration is ready. Before make CRAMFS, make sure that your
machine has installed zlib-devel. If not, install it. Then type following command to create
CRAMFS file

#./mkcramfs rootfs/ root dma.cramfs

47

A3 Cross-compile Net-SNMP for the ARM architecture

1. Download the source file of Net-SNMP wversion 5.6.1.1 from
http://sourceforge.net/projects/net-snmp/files/latest/download?source=directory

2. Unzip it

#tar —-xvf net-snmp-5.6.1.1.tar.gz

3. Create the Makefile of net-snmp-5.6.1.1

#cd net-snmp-5.6.1.1

./configure CC=/usr/local/arm/4.0.3/bin/arm-linux-gcc
--prefix=/home/memphis/snmp --build=1386-1inux
--host=arm-linux —-enable-mini-agent —-with-endianness=1little
--disable-manuals --disable-ucd-snmp-compatibility
--enable-as-needed --disable-embedded-perl
--without-perl-modules --disable-snmptrapd-subagent
-—-disable-applications --disable-scripts

-—-enable-ipv6 --with-mib-modules="mibII/ipvo6"
--with-tranports="UDPIPv6 TCPIPvG6"

make

make install

4. Copy the libraries of net-snmp to the embedded file system

#cp /usr/local/lib/libnetsmp* rootfs/lib/

5. Net-SNMP porting is completed.

48

A4 Cross-compile Sofia-SIP for the ARM architecture

1. Download the source file of Sofia-SIP-1.12.11 from
http://sourceforge.net/projects/sofia-sip/files/sofia-sip/1.12.11/sofia-sip-1.12.11.
tar.gz/download

2. Unzip it

#tar -xvf sofia-sip-1.12.11.tar.gz

3.Create the Makefile of sofia-sip

#./configure --host=arm-linux
CC=/usr/local/arm/4.0.3/bin/arm-linux—-gcc

4. Copy the libraries of sofia-sip to the embedded file system
#cp /usr/local/lib/libsofia-sip-ua* rootfs/lib/

5. Sofia-SIP porting is completed.

49

